Observation of diffuse scattering in scanning helium microscopy.

Phys Chem Chem Phys

Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.

Published: November 2022

In understanding the nature of contrast in the emerging field of neutral helium microscopy, it is important to identify if there is an atom-surface scattering distribution that can be expected to apply broadly across a range of sample surfaces. Here we present results acquired in a scanning helium microscope (SHeM) under typical operating conditions, from a range of surfaces in their native state, without any specialist sample preparation. We observe diffuse scattering, with an approximately cosine distribution centred about the surface normal. The 'cosine-like' distribution is markedly different from those distributions observed from the well-prepared, atomically pristine, surfaces typically studied in helium atom scattering experiments. Knowledge of the typical scattering distribution in SHeM experiments provides a starting basis for interpretation of topographic contrast in images, as well as a reference against which more exotic contrast mechanisms can be compared.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01951eDOI Listing

Publication Analysis

Top Keywords

diffuse scattering
8
scanning helium
8
helium microscopy
8
scattering distribution
8
scattering
5
observation diffuse
4
scattering scanning
4
helium
4
microscopy understanding
4
understanding nature
4

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Permanent Nanobubbles in Water: Liquefied Hollow Carbon Spheres Break the Limiting Diffusion Current of Oxygen Reduction Reaction.

J Am Chem Soc

January 2025

Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.

Porous liquids have traditionally been designed with sterically hindered solvents. Alternatively, recent efforts rely on dispersing microporous frameworks in simpler solvents like water. Here we report a unique strategy to construct macroporous water by selectively incorporating hydrophilicity on the surfaces of hydrophobic hollow carbon spheres (HCS).

View Article and Find Full Text PDF

The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.

View Article and Find Full Text PDF

Bulk properties of two-phase systems comprising methane and liquid p-xylene were derived experimentally using neutron imaging and theoretically predicted using molecular dynamics (MD). The measured and predicted methane diffusivity in the liquid, Henry's law constant, apparent molar volume, and surface tension compared well within the experimentally studied conditions (273.15 to 303.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!