Colorectal cancer is one of the most killing cancers and this has become a global problem. Current treatment and anticancer drugs cannot specifically target the cancerous cells, thus causing toxicity towards surrounding non-cancer cells. Hence, there is an urgent need to discover a more target-specific therapeutic agent to overcome this problem. Core-shell nanoparticles have emerged as good candidate for anticancer treatment. This study aimed to synthesize core-shell nanoparticles green method which utilised crude peels extract of as reducing and stabilising agents for drug delivery. Gold-silver core-shell nanoparticles (Au-AgNPs) were synthesized through seed germination process in which gold nanoparticles acted as the seed. A complete coating was observed through transmission electron microscopy (TEM) when the ratio of AuNPs and AgNPs was 1:9. The size of Au-AgNPs was 38.22 ± 8.41 nm and was mostly spherical in shape. Plant-based drug, protocatechuic acid (PCA) was loaded on the Au-AgNPs to investigate their anticancer activity. In HCT116 colon cancer cells, PCA-loaded Au-AgNPs (IC = 10.78 μg/ml) showed higher inhibitory action than the free PCA (IC= 148.09 μg/ml) and Au-AgNPs alone (IC= 24.36 μg/ml). Up to 80% inhibition of HCT116 cells was observed after the treatment of PCA-loaded Au-AgNPs at 15.63 μg/ml. The PCA-loaded Au-AgNPs also showed a better selectivity towards HCT116 compared to CCD112 colon normal cells when tested at the same concentrations. These findings suggest that Au-AgNPs system can be used as a potent nanocarrier to combat cancerous cells by offering additional anticancer properties to the loaded drug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593088PMC
http://dx.doi.org/10.3389/fmolb.2022.997471DOI Listing

Publication Analysis

Top Keywords

core-shell nanoparticles
16
pca-loaded au-agnps
12
gold-silver core-shell
8
protocatechuic acid
8
cancerous cells
8
au-agnps
8
cells
6
nanoparticles
5
anticancer
5
potential gold-silver
4

Similar Publications

Energetic MOF-derived FeC nanoparticles encased in N,S-codoped mesoporous pod-like carbon nanotubes for efficient oxygen reduction reaction.

Nanoscale

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The rational design of advanced oxygen reduction reaction (ORR) catalysts is essential to improve the performance of energy conversion devices. However, it remains a huge challenge to construct hierarchical micro-/meso-/macroporous nanostructures, especially mesoporous transport channels in catalysts, to enhance catalytic capability. Herein, motivated by the characteristics of energetic metal-organic frameworks (EMOFs) that produce an abundance of gases during high-temperature pyrolysis, we prepared a unique tetrazine-based EMOF-derived electrocatalyst (denoted as FeC@NSC-900) consisting of highly dispersed FeC nanoparticles and N,S-codoped mesoporous carbon nanotubes.

View Article and Find Full Text PDF

Li-Based Nanoprobes with Boosted Photoluminescence for Temperature Visualization in NIR Imaging-Guided Drug Release.

Nano Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.

View Article and Find Full Text PDF

Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions.

Food Chem

December 2024

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:

A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system.

View Article and Find Full Text PDF

Aminoglycoside/Hexadecanoic Acid Complex Lamellar Core Nanoparticles.

ACS Omega

December 2024

Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.

An aminoglycoside, tobramycin sulfate (TbS), was complexed with hexadecanoic acid (HdA), resulting in a TbS/HdA complex with a repeat unit of 5.3 nm of a lamellar nanostructure. The nanometer-sized TbS/HdA particles were produced using poloxamer 188 as a dispersing agent.

View Article and Find Full Text PDF

Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!