Ion channels are integral membrane protein complexes critical for regulation of membrane potential, cell volume, and other signaling events. As complex molecular assemblies with many interacting partners, ion channels have multiple structural and functional domains. While channel sequence and functional data are readily available across multiple online resources, there is an unmet need for functional annotation directly relating primary sequence information, 2D interactions, and three-dimensional protein structure. To this end, we present ChanFAD (Channel Functional Annotation Database), to provide the research community with a centralized resource for ion channel structure and functional data. ChanFAD provides functional annotation of PDB structures built on the National Center for Biotechnology Information's iCn3D structure viewing tool while providing additional information such as primary sequence, organism, and relevant links to other databases. Here we provide a brief tour of ChanFAD functionality while showing example use cases involving drug-channel interactions and structural changes based on mutation. ChanFAD is freely available and can be accessed at https://www.chanfad.org/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580856PMC
http://dx.doi.org/10.3389/fbinf.2022.835805DOI Listing

Publication Analysis

Top Keywords

functional annotation
16
ion channels
12
chanfad functional
8
annotation database
8
functional data
8
primary sequence
8
functional
6
chanfad
5
annotation
4
ion
4

Similar Publications

Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.

View Article and Find Full Text PDF

Cannabis use disorder affects up to 42% of individuals with schizophrenia, correlating with earlier onset, increased positive symptoms, and more frequent hospitalizations. This study employed an untargeted lipidomics approach to identify biomarkers in plasma samples from subjects with schizophrenia, cannabis use disorder, or both (dual diagnosis), aiming to elucidate the metabolic underpinnings of cannabis abuse and schizophrenia development. The use of liquid chromatography-high resolution mass spectrometry enabled the annotation of 119 metabolites, with the highest identification confidence level achieved for 16 compounds.

View Article and Find Full Text PDF

The mitochondrial whole genome of Phellinus igniarius was sequenced with the objective of examining the evolutionary relationships amongst related species. The entire mitochondrial genome was assembled using Illumina sequencing technology. The structural annotation and bioinformatics analysis were performed.

View Article and Find Full Text PDF

Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.

View Article and Find Full Text PDF

We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000 + cells per sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!