Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
genome assembly is a fundamental problem in computational molecular biology that aims to reconstruct an unknown genome sequence from a set of short DNA sequences (or ) obtained from the genome. The relative ordering of the reads along the target genome is known , which is one of the main contributors to the increased complexity of the assembly process. In this article, with the dual objective of improving assembly quality and exposing a high degree of parallelism, we present a partitioning-based approach. Our framework, BOA (bucket-order-assemble), uses a bucketing alongside graph- and hypergraph-based partitioning techniques to produce a partial ordering of the reads. This partial ordering enables us to divide the read set into disjoint blocks that can be independently assembled in parallel using any state-of-the-art serial assembler of choice. Experimental results show that BOA improves both the overall assembly quality and performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593263 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.105273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!