In this work, a novel electrochemical aptasensor was designed for the sensitive and specific detection of STR in milk samples. First, a gold nanoparticle@poly(diallyldimethylammonium chloride) nitrogen-doped carbon nanotube/polyethyleneimine-functionalized metal-organic framework (MOF) (Au@P-N-CNT/PEI-MIL-101(Cr)) composite was synthesized and characterized by various technique. The Au@P-N-CNT/PEI-MIL-101(Cr) composite was then modified on a bare glassy carbon electrode (GCE) surface, providing a favorable platform (Au@P-N-CNT/PEI-MIL-101(Cr)/GCE) for aptamer immobilization and current signal amplification. The STR aptamer was grafted to the Au@P-N-CNT/PEI-MIL-101(Cr)/GCE through the formation of Au-S bonds and π-π stacking interactions. The immobilized STR aptamer binds specifically STR, resulting in an obvious decrease in the current signal. Under the optimal experimental conditions, the linear range of the electrochemical aptasensor for STR detection was 0.01-250 nM which the detection limit (LOD) was calculate as 2.31 nM. This strategy is expected to be a novel platform for the rapid and sensitive detection of STR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.134150 | DOI Listing |
Heliyon
January 2025
Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India.
AI-optimized electrochemical aptasensors are transforming diagnostic testing by offering high sensitivity, selectivity, and rapid response times. Leveraging data-driven AI techniques, these sensors provide a non-invasive, cost-effective alternative to traditional methods, with applications in detecting molecular biomarkers for neurodegenerative diseases, cancer, and coronavirus. The performance metrics outlined in the comparative table illustrate the significant advancements enabled by AI integration.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.
Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.
Anal Chim Acta
February 2025
College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan. Electronic address:
Conductive nanofibers can exhibit excellent mechanical properties such as flexibility, elasticity, porosity, large surface area-to-volume ratio, etc making them suitable for a wide range of applications including biosensor development. Their large surface area provides more active sites for immobilization of large amount of bioreceptors enabling more interaction sites with the target analytes, enhancing sensitivity and detection capabilities. However, engineering conductive nanofibers with such excellent properties is challenging limiting their effective deployment for intended applications.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
H5N1 flu is a highly virulent and variable subtype of influenza with significant epidemic and pandemic potential. In this study, we introduce a novel, maskless, and rapid manufacturing process for a microfluidic chip integrated with electrodes for the quantitative detection of H5N1-DNA sequences. This detection leverages a catalytic redox-recycling signal via a novel Fe₃O₄@TMU-8 nanocomposite, which facilitates the turnover of the oxidation state of [Ru(NH₃)₆]³⁺, thereby amplifying the electrochemical signal output.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!