Ecotoxicological relevance of glyphosate and flazasulfuron to soil habitat and retention functions - Single vs combined exposures.

J Hazard Mater

GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.

Published: January 2023

Glyphosate (GLY) and flazasulfuron (FLA) are two non-selective herbicides commonly applied together. However, research focused on their single and combined ecotoxicological impacts towards non-target organisms is still inconclusive. Therefore, this study aimed to test their single effects on soil's habitat and retention functions, and to unravel their combined impacts to earthworms and terrestrial plants. For this, ecotoxicological assays were performed with plants (Medicago sativa), oligochaetes (Eisenia fetida) and collembola (Folsomia candida). Soil elutriates were also prepared and tested in macrophytes (Lemna minor) and microalgae (Raphidocelis subcapitata). FLA (82-413 µg kg) reduced earthworms' and collembola's reproduction and severely impaired M. sativa growth, being much more toxic than GLY (up to 30 mg kg). In fact, the latter only affected plant growth (≥ 9 mg kg) and earthworms (≥ 13 mg kg), especially at high concentrations, with no effects on collembola. Moreover, only elutriates from FLA-contaminated soils significantly impacted L. minor and R. sucapitata. The experiments revealed that the co-exposure to GLY and FLA enhanced the toxic effects of contaminated soils not only on plants but also on earthworms'. However, such increase in toxicity was dependent on GLY residual concentrations in soils. Overall, this work underpins that herbicides risk assessment should consider herbicides co-exposures, since the evaluation of single exposures is not representative of current phytosanitary practices and of the potential effects under field conditions, where residues of different compounds may persist in soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130128DOI Listing

Publication Analysis

Top Keywords

habitat retention
8
retention functions
8
single combined
8
ecotoxicological relevance
4
relevance glyphosate
4
glyphosate flazasulfuron
4
flazasulfuron soil
4
soil habitat
4
single
4
functions single
4

Similar Publications

Forest ecosystem nutrient cycling functions are the basis for the survival and development of organisms, and play an important role in maintaining the forest structural and functional stability. However, the response of forest nutrient cycling functions at the ecosystem level to whole-tree harvesting remains unclear. Herein, we calculated the ecosystem nitrogen (N), phosphorus (P), and potassium (K) absorption, utilization, retention, cycle, surplus, accumulation, productivity, turnover and return parameters and constructed N, P, and K cycling function indexes to identify the changes in ecosystem N, P, and K cycling functions in a secondary forest in the Qinling Mountains after 5 years of five different thinning intensities (0% (CK), 15%, 30%, 45%, and 60%).

View Article and Find Full Text PDF

Optimal allocation of technical reclamation and ecological restoration for a cost-effective solution in Pingshuo Opencast Coal Mine area of China.

J Environ Manage

January 2025

School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083, Beijing, People's Republic of China.

Limiting adverse consequences of mining activities requires ecosystem restoration efforts, whose arrangement around mining areas is poorly designed. It is unclear, however, where best to locate ecological projects to enhance ecosystem services cost-effectively. To answer this question, we conducted an optimized ecological restoration project planning by the Resource Investment Optimization System (RIOS) model to identify the restoration priority areas in the Pingshuo Opencast Coal Mine region in Shanxi Province.

View Article and Find Full Text PDF

Background: Although gut-derived uremic toxins are increased in azotemic chronic kidney disease (CKD) in cats and implicated in disease progression, it remains unclear if augmented formation or retention of these toxins is associated with the development of renal azotemia.

Objectives: Assess the association between gut-derived toxins (ie, indoxyl-sulfate, p-cresyl-sulfate, and trimethylamine-N-oxide [TMAO]) and the onset of azotemic CKD in cats.

Animals: Forty-eight client-owned cats.

View Article and Find Full Text PDF

The supply of nitrogen (N) and the efficiency with which it is used by phytoplankton serve as two fundamental controls on the productivity of many marine ecosystems. Shifts in nitrogen use efficiency (NUE) can decouple primary production from N-supply but how NUE varies across systems is poorly known. Through a global synthesis of how total N (TN) is apportioned among phytoplankton, particulate, dissolved inorganic, and dissolved organic pools, we demonstrate that NUE underlies broad variations in primary production.

View Article and Find Full Text PDF

Soil nitrogen (N) transformation is an essential portion of the N cycle in wetland ecosystems, governing the retention status of soil N by controlling the effective soil N content. N deposition produced by human activities changes the physical characteristics of soil, affecting N fractions and enzyme activities. To characterize these influences, three different N addition levels (N5, 5 g/m; N10, 10 g/m; N15, 15 g/m) were established using a wet meadow on the Qinghai-Tibet Plateau (QTP) as a control treatment (0 g/m).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!