A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNMT3A R882H mutation drives daunorubicin resistance in acute myeloid leukemia via regulating NRF2/NQO1 pathway. | LitMetric

Background: DNA methyltransferase 3A (DNMT3A) often mutate on arginine 882 (DNMT3A) in acute myeloid leukemia (AML). AML patients with DNMT3A R882 mutation are usually resistant to daunorubicin treatment; however, the associated mechanism is still unclear. Therefore, it is urgent to investigate daunorubicin resistance in AML patients with DNMT3A R882 mutant.

Method: AML cell lines with DNMT3A-wild type (DNMT3A-WT), and DNMT3A-Arg882His (DNMT3A-R882H) mutation were constructed to investigate the role of DNMT3A R882H mutation on cell proliferation, apoptosis and cells' sensitivity to Danunorubin. Bioinformatics was used to analyze the role of nuclear factor-E2-related factor (NRF2) in AML patients with DNMT3A R882 mutation. The regulatory mechanism of DNMT3A R882H mutation on NRF2 was studied by Bisulfite Sequencing and CO-IP. NRF2 inhibitor Brusatol (Bru) was used to explore the role of NRF2 in  AML cells carried DNMT3A R882H mutation.

Results: AML cells with a DNMT3A R882H mutation showed high proliferative and anti-apoptotic activities. In addition, mutant cells were less sensitive to daunorubicin and had a higher NRF2 expression compared with those in WT cells. Furthermore, the NRF2/NQO1 pathway was activated in mutant cells in response to daunorubicin treatment. DNMT3A R882H mutation regulated the expression of NRF2 via influencing protein stability rather than decreasing methylation of NRF2 promoter. Also, NRF2/NQO1 pathway inhibition improved mutant cells' sensitivity to daunorubicin significantly.

Conclusion: Our findings identified NRF2 as an important player in the regulation of cell apoptosis through which helps mediate chemoresistance to daunorubicin in AML cells with DNMT3A R882H mutation. Targeting NRF2 might be a novel therapeutic approach to treat AML patients with a DNMT3A R882H mutation. Video abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615155PMC
http://dx.doi.org/10.1186/s12964-022-00978-1DOI Listing

Publication Analysis

Top Keywords

dnmt3a r882h
28
r882h mutation
28
aml patients
16
patients dnmt3a
16
dnmt3a
12
nrf2/nqo1 pathway
12
dnmt3a r882
12
mutation
10
nrf2
9
daunorubicin resistance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!