The tie that binds: temporal coding and adaptive emotion.

Trends Cogn Sci

Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. Electronic address:

Published: December 2022

Emotions are temporally dynamic, but the persistence of emotions outside of their appropriate temporal context is detrimental to health and well-being. Yet, precisely how temporal coding and emotional processing interact remains unclear. Recently unveiled temporal context representations in the hippocampus, entorhinal cortex (EC), and prefrontal cortex (PFC) support memory for what happened when. Here, we discuss how these neural temporal representations may interact with densely interconnected amygdala circuitry to shape emotional functioning. We propose a neuroanatomically informed framework suggesting that high-fidelity temporal representations linked to dynamic experiences promote emotion regulation and adaptive emotional memories. Then, we discuss how newly-identified synaptic and molecular features of amygdala-hippocampal projections suggest that intense, amygdala-dependent emotional responses may distort temporal-coding mechanisms. We conclude by identifying key avenues for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tics.2022.09.005DOI Listing

Publication Analysis

Top Keywords

temporal coding
8
temporal context
8
temporal representations
8
temporal
6
tie binds
4
binds temporal
4
coding adaptive
4
adaptive emotion
4
emotion emotions
4
emotions temporally
4

Similar Publications

Behavioral research has shown that inconsistency in spelling-to-sound mappings slows visual word recognition and word naming. However, the time course of this effect remains underexplored. To address this, we asked skilled adult readers to perform a 1-back repetition detection task that did not explicitly involve phonological coding, in which we manipulated lexicality (high-frequency words vs.

View Article and Find Full Text PDF

Background: Medicare Bayesian Improved Surname and Geocoding (MBISG), which augments an imperfect race-and-ethnicity administrative variable to estimate probabilities that people would self-identify as being in each of 6 mutually exclusive racial-and-ethnic groups, performs very well for Asian American and Native Hawaiian/Pacific Islander (AA&NHPI), Black, Hispanic, and White race-and-ethnicity, somewhat less well for American Indian/Alaska Native (AI/AN), and much less well for Multiracial race-and-ethnicity.

Objectives: To assess whether temporal inconsistency of self-reported race-and-ethnicity might limit improvements in approaches like MBISG.

Methods: Using the Medicare Health Outcomes Survey (HOS) baseline (2013-2018) and 2-year follow-up data (2015-2020), we evaluate the consistency of self-reported race-and-ethnicity coded 2 ways: the 6 mutually exclusive MBISG categories and individual endorsements of each racial-and-ethnic group.

View Article and Find Full Text PDF

Electrographic recording of brain activity through either surface electrodes (electroencephalography, EEG) or implanted electrodes (electrocorticography, ECOG) are valuable research tools in neuroscience across many disciplines, including epilepsy, sleep science and more. Research techniques to perform recordings in rodents are wide-ranging and often require custom parts that may not be readily available. Moreover, the information required to connect individual components is often limited and can therefore be challenging to implement.

View Article and Find Full Text PDF

Our visual system enables us to effortlessly navigate and recognize real-world visual environments. Functional magnetic resonance imaging (fMRI) studies suggest a network of scene-responsive cortical visual areas, but much less is known about the temporal order in which different scene properties are analysed by the human visual system. In this study, we selected a set of 36 full-colour natural scenes that varied in spatial structure and semantic content that our male and female human participants viewed both in 2D and 3D while we recorded magnetoencephalography (MEG) data.

View Article and Find Full Text PDF

Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.

eNeuro

January 2025

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium

Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!