Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Systemic inflammation is a hallmark of severe coronavirus disease-19 (COVID-19). Anti-inflammatory therapy is considered crucial to modulate the hyperinflammatory response (cytokine storm) in hospitalized COVID-19 patients. There is currently no specific, conclusively proven, cost-efficient, and worldwide available anti-inflammatory therapy available to treat COVID-19 patients with cytokine storm. The present study aimed to investigate the treatment benefit of oral colchicine for hospitalized COVID-19 patients with suspected cytokine storm. Colchicine is an approved drug and possesses multiple anti-inflammatory mechanisms. This was a pilot, open-label randomized controlled clinical trial comparing standard of care (SOC) plus oral colchicine (colchicine arm) vs. SOC alone (control arm) in non-ICU hospitalized COVID-19 patients with suspected cytokine storm. Colchicine treatment was initiated within first 48 hours of admission delivered at 1.5 mg loading dose, followed by 0.5 mg b.i.d. for next 6 days and 0.5 mg q.d. for the second week. A total of 96 patients were randomly allocated to the colchicine (n=48) and control groups (n=48). Both colchicine and control group patients experienced similar clinical outcomes by day 14 of hospitalization. Treatment outcome by day 14 in colchicine vs control arm: recovered and discharged alive: 36 (75.0%) vs. 37 (77.1%), remain admitted after 14-days: 4 (8.3%) vs. 5 (10.4%), ICU transferred: 4 (8.3%) vs. 3 (6.3%), and mortality: 4 (8.3%) vs. 3 (6.3%). The speed of improvement of COVID-19 acute symptoms including shortness of breath, fever, cough, the need of supplementary oxygen, and oxygen saturation level, was almost identical in the two groups. Length of hospitalization was on average 1.5 day shorter in the colchicine group. There was no evidence for a difference between the two groups in the follow-up serum levels of inflammatory biomarkers including C-reactive protein (CRP), D-dimer, lactate dehydrogenase (LDH), ferritin, interleukin-6 (IL-6), high-sensitivity troponin T (hs-TnT) and N-terminal pro b-type natriuretic peptide (NT pro-BNP). According to the results of our study, oral colchicine does not appear to show clinical benefits in non-ICU hospitalized COVID-19 patients with suspected cytokine storm. It is possible that the anti-inflammatory pathways of colchicine are not crucially involved in the pathogenesis of COVID-19.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.26402/jpp.2022.3.09 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!