Endothelial lipase is synthetized almost exclusively in endothelial cells and then fixed on the luminal surface of the endothelium by means of heparan sulphate proteoglycans. The enzyme is expressed in the endothelium of nearly all tissues and the degree of expression is higher in richly vascularized tissues than in the less vascularized ones. The endothelial lipase expression in tissues is upregulated by shear and cyclic stress, angiotensin II and hypertension. The plasma enzyme level is elevated by pro-inflammatory cytokines, in metabolic syndrome and obesity. Prolonged exercise reduces the plasma enzyme level in the rat. The activity of the enzyme is inhibited by: sphingomyelin, angiopoietin-like protein 3 and 4, and insulin. Endothelial lipase reduces the plasma high density lipoprotein concentration and changes its properties. The enzyme is considered to be the main regulator of the plasma high density lipoprotein concentration. The plasma endothelial lipase concentration is elevated in coronary atherosclerosis and it is inversely correlated with the plasma high density lipoprotein level. The enzyme is considered to exert mostly pro-atherogenic effects. Its action as triglyceride lipase is important in hypertriglyceridemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.26402/jpp.2022.3.01 | DOI Listing |
Autophagy Rep
July 2024
Division of Rheumatology, Allergy, & Clinical Immunology, Gainesville, FL 32610.
Abnormal autophagy regulation is implicated in lupus and other autoimmune diseases. We investigated autophagy in the murine pristane-induced lupus model. Pristane causes monocyte/macrophage-mediated endoplasmic reticulum (ER) stress in lung endothelial cells and diffuse alveolar hemorrhage (DAH) indistinguishable from DAH in lupus patients.
View Article and Find Full Text PDFFEBS Lett
January 2025
Research Department, Purotech Bio Inc, Yokohama, Japan.
Hepatitis B virus (HBV) infects cells by attaching to heparan sulfate proteoglycans (HSPG) and Na/taurocholate cotransporting polypeptide (NTCP). The endothelial lipase LIPG bridges HSPG and HBV, facilitating HBV attachment. From a randomized peptide expression library, we identified a short sequence binding to LIPG.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFNutrients
December 2024
Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
: Endothelial peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipose tissue by facilitating lipid uptake into white adipocytes, but the role of endothelial lipid transport in systemic energy balance remains unclear. Ghrelin conveys nutritional information through the central nervous system and increases adiposity, while deficiency in its receptor, growth hormone secretagogue-receptor (GHSR), suppresses adiposity on a high-fat diet. This study aims to examine the effect of ghrelin/GHSR signaling in the endothelium on lipid metabolism.
View Article and Find Full Text PDFRes Sq
November 2024
Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY 10016.
The effect of increased triglycerides (TGs) as an independent factor in atherosclerosis development has been contentious, in part, because severe hypertriglyceridemia associates with low levels of low-density lipoprotein cholesterol (LDL-C). To test whether hyperchylomicronemia, in the absence of markedly reduced LDL-C levels, contributes to atherosclerosis, we created mice with induced whole-body lipoprotein lipase (LpL) deficiency combined with LDL receptor (LDLR) deficiency. On an atherogenic Western-type diet (WD), male and female mice with induced global LpL deficiency (i ) and LDLR knockdown ( ) developed hypertriglyceridemia and elevated cholesterol levels; all the increased cholesterol was in chylomicrons or large VLDL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!