Nanoclusters are remarkably promising for the capture and activation of small molecules for fuel production or as precursors for other chemicals of high commercial value. Since this process occurs under a wide variety of experimental conditions, an improved atomistic understanding of the stability and phase transitions of these systems will be key to the development of successful technological applications. In this work, we proposed a theoretical framework to explore the potential energy surface and configuration space of nanoclusters to map the most important morphologies presented by those systems and the phase transitions between them. A fully automated process was developed, which combines global optimization techniques, classical molecular dynamics, and unsupervised machine learning algorithms. To showcase these capabilities of the approach, we explored the example of copper nanoclusters (Cu) where = 13, 38, 55, 75, 98, 102, and 147. We not only reported a graphical potential energy surface for each size, but also explored the topology of the configuration space via structural and thermodynamic analyses. The effect of size on the potential energy surface and the critical temperature for solid-liquid phase transitions were also reported, highlighting the impact of magic numbers on those quantities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.2c00957DOI Listing

Publication Analysis

Top Keywords

potential energy
16
phase transitions
12
energy surface
12
theoretical framework
8
molecular dynamics
8
configuration space
8
framework based
4
based molecular
4
dynamics data
4
data mining
4

Similar Publications

Pseudomonas aeruginosa T6SS secretes an oxygen-binding hemerythrin to facilitate competitive growth under microaerobic conditions.

Microbiol Res

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions.

View Article and Find Full Text PDF

Dimensional engineering of interlayer for efficient large-area perovskite solar cells with high stability under ISOS-L-3 aging test.

Sci Adv

January 2025

Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China.

The utilization of low-dimensional perovskites (LDPs) as interlayers on three-dimensional (3D) perovskites has been regarded as an efficient strategy to enhance the performance of perovskite solar cells. Yet, the formation mechanism of LDPs and their impacts on the device performance remain elusive. Herein, we use dimensional engineering to facilitate the controllable growth of 1D and 2D structures on 3D perovskites.

View Article and Find Full Text PDF

A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.

View Article and Find Full Text PDF

Carbon dioxide (CO2) capture and its subsequent catalytic fixation into usable compounds represent a potential approach for addressing the energy problem and the implications of global warming. Hence, it is necessary to develop effective catalytic systems required for the transformation of CO2 into valuable chemicals/fuels. Herein, we rationally designed a hydroxyl-functionalized porous organic framework (OH-POF) consisting of both acidic (OH) as well as basic N sites for the transformation of CO2 using epoxides for the production of cyclic carbonates (CCs), a useful commodity chemical under environmental-friendly, metal/solvent/co-catalyst-free conditions.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!