Moesin-ezrin-radixin-like protein merlin: Its conserved and distinct functions from those of ERM proteins.

Biochim Biophys Acta Biomembr

Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan.

Published: February 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2022.184076DOI Listing

Publication Analysis

Top Keywords

moesin-ezrin-radixin-like protein
4
protein merlin
4
merlin conserved
4
conserved distinct
4
distinct functions
4
functions erm
4
erm proteins
4
moesin-ezrin-radixin-like
1
merlin
1
conserved
1

Similar Publications

Purpose: The NCI-MATCH trial assigned patients with solid tumors, lymphomas, or multiple myeloma to targeted therapies on the basis of identified genetic alterations from tumor biopsies. In preclinical models, ()-inactivated tumors display sensitivity to focal adhesion kinase (FAK) inhibition. The EAY131-U subprotocol evaluated the efficacy of defactinib, a FAK inhibitor, in patients with -altered tumors.

View Article and Find Full Text PDF

Similar to T cells and B cells, mast cell surfaces are dominated by microvilli, and like these other immune cells we showed with microvillar cartography (MC) that key signaling proteins for RBL mast cells localize to these topographical features. Although stabilization of ordered lipid nanodomains around antigen-crosslinked IgE-FcεRI is known to facilitate necessary coupling with Lyn tyrosine kinase to initiate transmembrane signaling in these mast cells, the relationship of ordered-lipid nanodomains to membrane topography had not been determined. With nanoscale resolution provided by MC, SEM and co-localization probability (CP) analysis, we found that FcεRI and Lyn kinase are positioned exclusively on the microvilli of resting mast cells in separate nano-assemblies, and upon antigen-activation they merge into overlapping populations together with the LAT scaffold protein, accompanied by elongation and merger of microvilli into ridge-like ruffles.

View Article and Find Full Text PDF

Neuronal PLPP/CIN exaggerates the immune response of hippocampal microglia to LPS challenge dependent on PAK1-NF-κB-COX-2 signaling pathway.

Brain Res

November 2024

Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea. Electronic address:

Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion.

View Article and Find Full Text PDF

Functional annotation of the Hippo pathway somatic mutations in human cancers.

Nat Commun

November 2024

Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.

The Hippo pathway is commonly altered in cancer initiation and progression; however, exactly how this pathway becomes dysregulated to promote human cancer development remains unclear. Here we analyze the Hippo somatic mutations in the human cancer genome and functionally annotate their roles in targeting the Hippo pathway. We identify a total of 85 loss-of-function (LOF) missense mutations for Hippo pathway genes and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

A substitution at the cytoplasmic tail of the spike protein enhances SARS-CoV-2 infectivity and immunogenicity.

EBioMedicine

December 2024

New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China. Electronic address:

Article Synopsis
  • The study investigates mutations in the SARS-CoV-2 Omicron variant, highlighting how natural selection has allowed beneficial changes in the virus to thrive and spread globally.
  • By analyzing over 496,000 Omicron sequences, researchers identified significant mutations in the Spike (S) protein that enhance the virus's ability to infect hosts and evade immune responses.
  • One key finding is the P1263L substitution in the Spike protein that increases viral entry and boosts the efficacy of mRNA vaccines, providing insights for vaccine optimization against COVID-19.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!