Objective: While clinical Artificial Intelligence (cAI) mortality prediction models and relevant studies have increased, limitations including the lack of external validation studies and inadequate model calibration leading to decreased overall accuracy have been observed. To combat this, we developed and evaluated a novel deep neural network (DNN) and a validation framework to promote transparent cAI development.

Methods: Data from Japan's largest ICU database was used to develop the DNN model, predicting in-hospital mortality including ICU and post-ICU mortality by days since ICU discharge. The most important variables to the model were extracted with SHapley Additive exPlanations (SHAP) to examine the DNN's efficacy as well as develop models that were also externally validated.

Main Results: The area under the receiver operating characteristic curve (AUC) for predicting ICU mortality was 0.94 [0.93-0.95], and 0.91 [0.90-0.92] for in-hospital mortality, ranging between 0.91-0.95 throughout one year since ICU discharge. An external validation using only the top 20 variables resulted with higher AUCs than traditional severity scores.

Conclusions: Our DNN model consistently generated AUCs between 0.91-0.95 regardless of days since ICU discharge. The 20 most important variables to our DNN, also generated higher AUCs than traditional severity scores regardless of days since ICU discharge. To our knowledge, this is the first study that predicts ICU and in-hospital mortality using cAI by post-ICU discharge days up to over a year. This finding could contribute to increased transparency on cAI applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.accpm.2022.101167DOI Listing

Publication Analysis

Top Keywords

in-hospital mortality
16
icu discharge
16
days icu
12
icu
9
model predicting
8
predicting in-hospital
8
japan's largest
8
icu database
8
validation framework
8
clinical artificial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!