Urban vegetation affects urban microclimate and maintains biodiversity, which is vital to the social-ecological system. However, there is a lack of research on quantitatively identifying urbanization stage impact on vegetation dynamics, and the stage difference in the response of vegetation dynamics to urbanization characteristics is not clear. In this study, taking Changsha City as an example, we explored the response of vegetation dynamics to urbanization, and identified the impact stages of urbanization on vegetation dynamics as well as their social-ecological characteristics. The results showed that the vegetation dynamics in Changsha City presented spatial pattern of "increase-decrease-increase" from downtown to outside in the past 20 years. The population density, GDP density and construction land proportion firstly inhibited vegetation growth, and then promoted it, with the turning points of 141.58 million yuan/km, 1205 person/km, and 19.80 %, respectively. Then, the urbanization impact on vegetation dynamics was quantitatively divided into three stages according to the vegetation change speed, and in different stages, urbanization impacts on vegetation dynamics were compared. This study illustrated the typical stage feature of the urbanization impact on vegetation dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159659 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.
View Article and Find Full Text PDFSci Data
January 2025
Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Leipzig, 04103, Germany.
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China.
Land use changes profoundly affect hydrological processes and water quality at various scales, necessitating a comprehensive understanding of sustainable water resource management. This paper investigates the implications of land use alterations in the Gap-Cheon watershed, analyzing data from 2012 and 2022 and predicting changes up to 2052 using the Future Land Use Simulation (FLUS) model. The study employs the Hydrological Simulation Program-FORTRAN (HSPF) model to assess water quantity and quality dynamics.
View Article and Find Full Text PDFSci China Life Sci
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Organic Agriculture Division, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea.
Paddy field ecosystems are crucial for crop production, biodiversity conservation, and ecosystem services. Although previous studies have examined paddy field biodiversity, few have addressed how the distribution and species richness of vegetation and soil seed banks are regulated. This study investigated the distribution of wetland plants and soil seed banks in paddy fields across diverse habitat types and identified factors influencing their patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!