Core-shell GaInN/GaN multiquantum shell (MQS) nanowires (NWs) are gaining great attention for high-efficiency micro-light-emitting diodes (micro-LEDs) owing to the minimized etching region on their sidewall, nonpolar or semipolar emission planes, and ultralow density of dislocations. In this study, we evaluated the changes in NW morphologies and the corresponding device properties induced by GaInN/GaN superlattice (SL) structures. The cathodoluminescence intensities of the samples with 20 and 40 pairs of SLs were about 2.2 and 3.4 times higher, respectively, than that of the sample without SLs. The high-resolution scanning transmission electron microscopy (STEM) inspection confirmed that the high growth temperature of SLs prevented growth in the semipolar plane region close to the n-GaN core. A similar phenomenon was also observed for the GaN quantum barriers of the semipolar MQS region under a high growth temperature of 810 °C. This phenomenon was ascribed to the passivation of the semipolar plane surface by hydrogen atoms and the high probability of decomposition through NH or N-H-related bonds. Although no clear SL grew on the semipolar plane near the n-core region, the top area of the nonpolar plane SL was expected to adequately suppress the point defects propagating from the n-GaN core to the semipolar plane MQS. The electroluminescence (EL) spectra and light output curves demonstrated a clear enhancement of more than 3-folds compared to the fabricated micro-LEDs without SL structures, which was associated with the improved crystalline quality of the MQS and enlarged area of the semipolar planes. Moreover, by increasing the growth time of GaN quantum barriers, the EL emission intensity of the micro-LED devices exhibited a 4-fold improvement owing to the reduced carrier overflow in the thickened GaN barriers on the semipolar (11̅01) planes. Thus, the results verified the possibility of realizing highly efficient NW-based micro-LEDs by optimizing the NW morphology using SL structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c13648 | DOI Listing |
Nanophotonics
April 2024
Department of Physics and Electronics, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan.
Light-emitting diodes (LEDs) are widely used as next-generation light sources because of their various advantages. However, their luminous efficiency is remarkably low at the green-emission wavelength. The luminous efficiencies of InGaN/GaN quantum wells (QWs) significantly decrease with increasing indium content in the green wavelength region, mainly owing to the quantum-confined Stark effect (QCSE).
View Article and Find Full Text PDFNanoscale Adv
April 2024
Department of Materials Science and Engineering, Meijo University 1-501 Shiogamaguchi, Tenpaku-ku Nagoya 468-8502 Japan.
Significant attention has been directed toward core-shell GaInN/GaN multiple-quantum shell (MQS) nanowires (NWs) in the context of high-efficiency micro light-emitting diodes (micro-LEDs). These independent three-dimensional NWs offer the advantage of reducing the impact of sidewall etching regions. Furthermore, the emitting plane on the sidewalls demonstrates either nonpolar or semipolar orientation, while the dislocation density is exceptionally low.
View Article and Find Full Text PDFMaterials (Basel)
January 2024
Research Center for Optoelectronics Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
AlN epilayers were grown on magnetron-sputtered (MS) (11-22) AlN buffers on -plane sapphire substrates at 1450 °C via hydride vapour phase epitaxy (HVPE). The MS buffers were annealed at high temperatures of 1400-1600 °C. All the samples were characterised using X-ray diffraction, atomic force microscopy, scanning electron microscope and Raman spectrometry.
View Article and Find Full Text PDFTextured surface with micro-facets have been widely observed in semipolar and nonpolar III-nitride heterostructures, mainly resulted from the anisotropic growth rate in the growth plane. Polarization and the intensity distribution of surface emissions are both affected by the surface morphology. The indium tin oxide (ITO) layer, serving as the current spreading layer, are usually employed to enhance the current injection efficiency and light extraction efficiency in III-nitride emitters.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109.
Interface engineering in heterostructures at the atomic scale has been a central research focus of nanoscale and quantum material science. Despite its paramount importance, the achievement of atomically ordered heterointerfaces has been severely limited by the strong diffusive feature of interfacial atoms in heterostructures. In this work, we first report a strong dependence of interfacial diffusion on the surface polarity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!