Two-dimensional (2D) nanomaterials hold great potential for cancer theranostic applications, yet their clinical translation faces great challenges of high toxicity and limited therapeutic/diagnostic modality. Here, we have created a kind of symbiotic 2D carbon-2D clay nanohybrids, which are composed of a novel 2D carbon nanomaterial (carbon nanochips, or CNC), prepared by carbonizing a conjugated polymer polydiiodobutadiyne, and a 2D layered aluminosilicate clay mineral montmorillonite (MMT). Intriguingly, with the formation of the nanohybrids, MMT can help the dispersion of CNC, while CNC can significantly reduce the hemolysis and toxicity of MMT. The symbiotic combination of CNC and MMT also leads to a synergistic anti-cancer theranostic effect. CNC has a strong absorption and high photothermal conversion efficiency in the second near-infrared region (NIR-II, 1000-1700 nm), while MMT contains Fe that can facilitate the generation of reactive oxygen species from highly expressed HO in tumor microenvironment. The nanohybrids not only enable a synergy of photothermal therapy and chemodynamic therapy to suppress the extremely rapid growth of RM1 tumors in mice but also allow for dual photoacoustic and magnetic imaging to guide the drug delivery and NIR-II irradiation execution, hence establishing a highly efficient and biosafe "all-in-one" theranostic platform for precision nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c11340DOI Listing

Publication Analysis

Top Keywords

cnc
5
mmt
5
near-infrared-ii activatable
4
activatable symbiotic
4
symbiotic carbon-clay
4
nanohybrids
4
carbon-clay nanohybrids
4
nanohybrids dual
4
dual imaging-guided
4
imaging-guided combinational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!