Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the significant iron-based material, hydroxyl-functionalized ball-milled zero-valent iron/Fe3O4 (HFB-ZVI/Fe3O4) was employed for the experiments. The performance of the Electro + HFB-ZVI/Fe3O4 + Oxone system for the degradation of chemical oxygen demand (COD) in antibiotic wastewater was investigated. A direct current was applied between a graphite plate anode and two iron plate cathodes, and a series of operational parameters, such as applied electric current, the dosage of HFB-ZVI/FeO composite, the dosage of Oxone, and initial solution pH, were explored to evaluate the oxidation process. The application of electric current enhanced the gradual degradation of COD and the increase of current intensity accelerated COD degradation. The neutral condition was favourable for the rapid degradation of COD in a short reaction time by the Electro + HFB-ZVI/Fe3O4 + Oxone process and promoted the degradation efficiency of COD. An increase of electric current gradually decreased the reaction solution pH, the larger the electric current applied in the reaction process, the lower the final pH of the reaction solution. Under the optimal experimental conditions (1 g/L HFB-ZVI/FeO composite, 0.3 g/L Oxone, current intensity = 500 mA, initial solution pH = 7.85), Electro + HFB-ZVI/Fe3O4 + Oxone achieved 99% COD degradation in antibiotic wastewater. Radicals quenching experiments indicated the contribution to COD degradation by hydroxyl radicals (HO), sulphate radicals (SO) and other oxidants were 66.03%, 24.014% and 9.756%, respectively. The possible mechanism of COD degradation in the Electro + HFB-ZVI/Fe3O4 + Oxone system was also discussed in this study. The findings in this work provided useful information for the treatment of wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2022.2141661 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!