A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Tailored Gender-Sensitive mHealth Weight Loss Intervention (I-GENDO): Development and Process Evaluation. | LitMetric

Background: Given the increase in the prevalence of overweight and obesity worldwide, the number of digital weight loss interventions has also risen. However, these interventions often lack theoretical background and data on long-term effectiveness. The consideration of individual and gender differences in weight-related psychological parameters might enhance the efficacy and sustainability of mobile-based weight loss interventions.

Objective: This paper presented an introduction to and the process evaluation of a 12-week gender-sensitive mobile health (mHealth) weight loss intervention (I-GENDO) combining computer-based and self-tailoring features.

Methods: Between August 2020 and August 2021, individuals with overweight (BMI 25.0-29.9 kg/m²), those with obesity class I (BMI 30.0-34.9 kg/m²), and those with obesity class II (BMI 35.0-39.9 kg/m²) were recruited to the I-GENDO project, a multicenter study in Germany. The mHealth intervention aimed at targeting individual psychological factors associated with the development and persistence of overweight and obesity (eg, emotional eating) using computer-based tailoring. Moreover, the intervention took a gender-sensitive approach by implementing self-tailoring of gender-targeted module versions. The computer-based assignment of the main modules, self-selection of gender-targeted module versions, and use patterns were evaluated while considering gender. Moreover, gender differences in the usability assessment were analyzed.

Results: Data from the intervention arm of the study were processed. A total of 116 individuals with overweight and obesity (77/116, 66.4% women; age mean 47.28, SD 11.66 years; BMI mean 33.58, SD 3.79 kg/m) were included in the analyses. Overall, the compliance (90/109, 82.6%) and satisfaction with the app (mean 86% approval) were high and comparable with those of other mobile weight loss interventions. The usability of the intervention was rated with 71% (5.0/7.0 points) satisfaction. More women obtained the main module that focused on emotion regulation skills. Most men and women selected women-targeted versions of the main modules. Women used the app more frequently and longer than men. However, women and men did not differ in the progress of use patterns throughout the intervention.

Conclusions: We developed a tailored gender-sensitive mHealth weight loss intervention. The usability of and engagement with the intervention were satisfactory, and the overall satisfaction with the intervention was also high. Gender differences must be considered in the evaluation of the effectiveness and sustainability of the intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650578PMC
http://dx.doi.org/10.2196/38480DOI Listing

Publication Analysis

Top Keywords

weight loss
24
mhealth weight
12
loss intervention
12
overweight obesity
12
gender differences
12
intervention
10
tailored gender-sensitive
8
gender-sensitive mhealth
8
intervention i-gendo
8
process evaluation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!