N-methyl-D-aspartate receptors (NMDARs) uniquely require binding of two different neurotransmitter agonists for synaptic transmission. D-serine and glycine bind to one subunit, GluN1, while glutamate binds to the other, GluN2. These agonists bind to the receptor's bi-lobed ligand-binding domains (LBDs), which close around the agonist during receptor activation. To better understand the unexplored mechanisms by which D-serine contributes to receptor activation, we performed multi-microsecond molecular dynamics simulations of the GluN1/GluN2A LBD dimer with free D-serine and glutamate agonists. Surprisingly, we observed D-serine binding to both GluN1 and GluN2A LBDs, suggesting that D-serine competes with glutamate for binding to GluN2A. This mechanism is confirmed by our electrophysiology experiments, which show that D-serine is indeed inhibitory at high concentrations. Although free energy calculations indicate that D-serine stabilizes the closed GluN2A LBD, its inhibitory behavior suggests that it either does not remain bound long enough or does not generate sufficient force for ion channel gating. We developed a workflow using pathway similarity analysis to identify groups of residues working together to promote binding. These conformation-dependent pathways were not significantly impacted by the presence of N-linked glycans, which act primarily by interacting with the LBD bottom lobe to stabilize the closed LBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612912PMC
http://dx.doi.org/10.7554/eLife.77645DOI Listing

Publication Analysis

Top Keywords

d-serine
8
d-serine binding
8
receptor activation
8
binding
5
excitatory inhibitory
4
inhibitory d-serine
4
binding nmda
4
nmda receptor
4
receptor n-methyl-d-aspartate
4
n-methyl-d-aspartate receptors
4

Similar Publications

Age- and Sex-Specific Regulation of Serine Racemase in the Retina of an Alzheimer's Disease Mouse.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.

Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.

View Article and Find Full Text PDF

Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria.

Nat Commun

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.

View Article and Find Full Text PDF

D-Serine May Ameliorate Hippocampal Synaptic Plasticity Impairment Induced by Patients' Anti-N-methyl-D-aspartate Receptor Antibodies in Mice.

Biomedicines

December 2024

Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.

: To establish a mouse model of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and assess the potential therapeutic benefits of D-serine supplementation in mitigating synaptic plasticity impairments induced by anti-NMDAR antibodies. : Anti-NMDAR antibodies were purified from cerebrospinal fluid (CSF) samples of patients diagnosed with anti-NMDAR encephalitis and verified using a cell-based assay. CSF from patients with non-inflammatory neurological diseases served as the control.

View Article and Find Full Text PDF

Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been proposed to underlie the pathophysiology of schizophrenia, suggesting that promoting NMDAR activity may alleviate the negative or cognitive symptoms associated with schizophrenia. To circumvent excitotoxicity that may accompany direct agonism of the glutamate binding site on the NMDAR, therapeutic trials have focused on targeting the glycine binding site on the NMDAR. Direct administration of either glycine or D-serine, both of which are endogenous coagonists at the NMDAR glycine site, has yielded mixed outcomes across an array of clinical trials investigating different doses or patient populations.

View Article and Find Full Text PDF

Variations of blood D-serine and D-aspartate homeostasis track psychosis stages.

Schizophrenia (Heidelb)

December 2024

CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.

Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!