In order to realize the early diagnosis of Alzheimer's disease (AD), we designed and synthesized a series of multi-fluorine labeled indanone derivatives based on indanone which could target β-amyloid (Aβ). Through the in vitro staining experiment and affinity experiment, we selected 7d out, and then evaluated it through other in vivo and in vitro experiments. The staining of AD human brain adjacent sections revealed that compound 7d could bind to Aβ plaques with high affinity. In the in vitro binding assay, 7d showed a balanced affinity with Aβ1-40 (K = 367 ± 13) and Aβ1-42 (K = 384 ± 56). Also, 7d exhibited a low toxicity (LD50 > 50 mg/kg) and an excellent ability to pass through the blood-brain barrier (Log p = 3.87). The biodistribution experiment in mice showed that 7d reached the highest brain uptake after 1 h of tail vein injection and cleared after 24 h. A low concentration of 7d (1.875 mg/ml) showed a strong imaging ability (19F-weighted mode), and the imaging capability increased with the increasing of concentration. All the results showed that 7d could provide a feasible solution for the early diagnosis of AD under non-radioactive condition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14162DOI Listing

Publication Analysis

Top Keywords

multi-fluorine labeled
8
labeled indanone
8
indanone derivatives
8
early diagnosis
8
derivatives potential
4
potential mri
4
mri imaging
4
imaging probes
4
probes β-amyloid
4
β-amyloid plaques
4

Similar Publications

In order to realize the early diagnosis of Alzheimer's disease (AD), we designed and synthesized a series of multi-fluorine labeled indanone derivatives based on indanone which could target β-amyloid (Aβ). Through the in vitro staining experiment and affinity experiment, we selected 7d out, and then evaluated it through other in vivo and in vitro experiments. The staining of AD human brain adjacent sections revealed that compound 7d could bind to Aβ plaques with high affinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!