Vitamin C (l-ascorbate) deficiency is a global public health issue most prevalent in resource-limited regions, creating a need for an inexpensive detection platform. Here, we describe efforts to engineer whole-cell and cell-free ascorbate biosensors. Both sensors used the protein UlaR, which binds to a metabolite of ascorbate and regulates transcription. The whole-cell sensor could detect lower, physiologically relevant concentrations of ascorbate, which we attributed to intact functionality of a phosphotransferase system (PTS) that transports ascorbate across the cell membrane and phosphorylates it to form UlaR's ligand. We used multiple strategies to enhance cell-free PTS functionality (which has received little previous attention), improving the cell-free sensor's performance, but the whole-cell sensor remained more sensitive. These efforts demonstrated an advantage of whole-cell sensors for detection of molecules─like ascorbate─transformed by a PTS, but also proof of principle for cell-free sensors requiring membrane-bound components like the PTS. In addition, the cell-free sensor was functional in plasma, setting the stage for future implementation of ascorbate sensors for clinically relevant biofluids in field-deployable formats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807260 | PMC |
http://dx.doi.org/10.1021/acssynbio.2c00335 | DOI Listing |
Sensors (Basel)
January 2025
School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses.
View Article and Find Full Text PDFACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam. Electronic address:
Whole-cell bioreactors equipped with external physico-chemical sensors have gained attention for real-time toxicity monitoring. However, deploying these systems in practice is challenging due to potential interference from unknown wastewater constituents with liquid-contacted sensors. In this study, a novel approach using a bioreactor integrated with a non-dispersive infrared CO₂ sensor for both toxicity detection and real-time monitoring of microbial growth phases was successfully demonstrated.
View Article and Find Full Text PDFTransepithelial electrical resistance (TEER) measurement is a label free, rapid and real-time technique, which is commonly used to evaluate the integrity of cell barriers. TEER characterization is important for applications, such as tissue (brain, intestines, lungs) barrier modeling, drug screening, and cell growth monitoring. Traditional TEER methods usually only show the average impedance of the whole cell layer, and lack accuracy and the characterization of internal spatial differences within cell layer regions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ-08854, USA.
Fluorescent light-up aptamer (FLAP) systems are promising (bio)sensing platforms that are genetically encodable. However, FLAP-mediated detection of each distinct target necessitates either in vitro selection or engineering of nucleic acid sequences. Furthermore, an aptamer that binds an inorganic target or a chemical species with a short lifetime is challenging to realize.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!