Narrowband photodetectors (NPDs) with the capability of detecting light within a selective wavelength range are in high demand for numerous emerging applications such as imaging systems, machine vision, and optical communication. Halide perovskite materials have been developed for eliminating the current complex filtering systems in NPDs due to their beneficial properties, while currently NPDs using perovskite materials are limited by hardly fully eliminated short wavelength response, low charge collection efficiency (CCE), complex fabrication process, and so forth. Herein, a series of perovskite single-crystalline heterojunctions (PSCHs) with a structure of Bi-MAPbX/MAPbY are fabricated by liquid phase epitaxy for filter-free narrowband detection. By varying the halide component in the PSCH, the PSCH-based NPDs can realize continuously tunable spectral response range from blue to NIR regions and ultra-narrow full width at half-maximum (FWHM) of <20 nm. Specifically, the PSCH-based NPD with a high CCE under a large electric filed shows a high spectra rejection ratio of >1000, a fast response speed with rise/fall time of ∼160/∼225 μs, and long-term stability more than 3 months in ambient air. This work provides a simple strategy for designing low-cost and high-performance filter-free NPDs with a tunable spectral response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c13126 | DOI Listing |
Nature
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Sichuan University, 610207, Chengdu, China.
In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China.
Owing to the predominant merit of tunable bandgaps, tin-lead mixed perovskites have shown great potentials in realizing near-infrared optoelectronics and are receiving increasing attention. However, despite the merit, there is still a lack of fundamental understanding of the bandgap variation as a function of Sn/Pb ratio, mainly because the films are easy to segregate in terms of both composition and phase. Here, we report a fully stoichiometric synthesis of monocrystalline FAPbSnI nanocrystals as well as their atomic-scale imaging.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, CA 93405, USA.
Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!