The distributions of small rodents in mountainous environments across different elevations can provide important information regarding the effects of climate change on the dispersal of plant species. However, few studies of oak forest ecosystems have compared the elevational patterns of sympatric rodent diversity, seed dispersal, seed bank, and seedling abundance. Thus, we tested the differences in the seed disperser composition and abundance, seed dispersal, seed bank abundance, and seedling recruitment for Quercus wutaishanica along 10 elevation levels in the Taihang Mountains, China. Our results provide strong evidence that complex asymmetric seed dispersal and seedling regeneration exist along an elevational gradient. The abundance of rodents had a significant negative correlation with the elevation and the seed removal rates peaked and then declined with increasing elevation. The seed removal rates were higher at middle and lower elevations than higher elevations but acorns were predated by 5 species of seed predators at middle and lower elevations, and thus, there was a lower likelihood of recruitment compared with those dropped beneath mother oaks at higher elevations. More importantly, the number of individual seeds in the seed bank and seedlings increased with the elevation, although dispersal services were reduced at sites lacking rodents. As conditional mutualists, the rodents could possibly act as antagonistic seed predators rather than mutualistic seed dispersers at low and middle elevations, thereby resulting in the asymmetric pattern of rodent and seedling abundance with increasing elevation to affect the community assembly and ecosystem functions on a large spatial scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1749-4877.12695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!