Whole-cell biosensing links the sensing and computing capabilities of microbes to the generation of a detectable reporter. Whole cells enable dynamic biological computation (filtered noise, amplified signals, logic gating etc.). Enzymatic reporters enable signal amplification. Electrochemical measurements are easily quantified and work in turbid environments. In this work we show how the coexpression of the lactose permease, LacY, dramatically improves electrochemical sensing of β-galactosidase (LacZ) expressed as a reporter in whole cells. The permease facilitates transport of the LacZ substrate, 4-aminophenyl β-d-galactopyranoside, which is converted to redox active -aminophenol, which, in turn, is detected via cyclic voltammetry or chronocoulometry. We show a greater than fourfold improvement enabled by coexpression in cells engineered to respond to bacterial signal molecules, pyocyanin and quorum-sensing autoinducer-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2144/btn-2022-0090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!