A four-component domino Michael-Mannich cyclocondensation of amines, dialkyl acetylenedicarboxylaes, and formaldehyde was utilized to develop a green technique for sans metal combination of polyfunctionalized dihydro-2-oxypyrroles. It involves visible light as an environmentally friendly power source and acridine yellow G (AYG) as a photo-induced electron transfer (PET) photocatalyst. The motivation behind this examination was to expand the utilization of a non-metal dye that is both reasonable and broadly accessible. Photochemically catalyzed AYG flaunts exceptional returns, energy effectiveness, and natural agreeableness, as well as extraordinary iota economy, efficient highlights, and comfort of purpose. Key abilities consist of an easy experimental setup, big substrate tolerance, finance-friendly, clean painting-up strategies within the absence of tedious separation techniques, and minimized the quantity of waste for each organic transformation. The type of yields is pretty uniform (85-97%, average 92.09%), and the shape of reaction times might be very speedy (15-30 min, average 21.59 min), and the factor stated inside the dialogue is that the method tolerates quite a number electron-donating and electron-withdrawing functional groups, while, however, giving extremely good yields. The response within the reason is insensitive to the person of the substituents. Subsequently, many compounds and natural factors can be followed over the course of time. Shockingly, gram-scale cyclization is conceivable, proposing that the strategy could be utilized in industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590109PMC
http://dx.doi.org/10.3389/fchem.2022.1015330DOI Listing

Publication Analysis

Top Keywords

acridine yellow
8
yellow ayg
8
ayg photo-induced
8
photo-induced electron
8
electron transfer
8
transfer pet
8
pet photocatalyst
8
michael-mannich cyclocondensation
8
photocatalyst employed
4
employed radical
4

Similar Publications

Versatile applications of fullerenol nanoparticles.

Int J Pharm

July 2024

Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia.

Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically.

View Article and Find Full Text PDF

Tracing individual cell pathways among the whole population is crucial for understanding their behavior, cell communication, migration dynamics, and fate. Optical labeling is one approach for tracing individual cells, but it typically requires genetic modification to induce the generation of photoconvertible proteins. Nevertheless, this approach has limitations and is not applicable to certain cell types.

View Article and Find Full Text PDF

A four-component domino Michael-Mannich cyclocondensation of amines, dialkyl acetylenedicarboxylaes, and formaldehyde was utilized to develop a green technique for sans metal combination of polyfunctionalized dihydro-2-oxypyrroles. It involves visible light as an environmentally friendly power source and acridine yellow G (AYG) as a photo-induced electron transfer (PET) photocatalyst. The motivation behind this examination was to expand the utilization of a non-metal dye that is both reasonable and broadly accessible.

View Article and Find Full Text PDF

A systematic computational study of acridine derivatives through conceptual density functional theory.

Mol Divers

June 2023

Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, India.

A detailed computational analysis of acridine derivatives viz. acridone, 9-amino acridine hydrochloride hydrate, proflavin, acridine orange and acridine yellow is done in terms of conceptual density functional theory (CDFT). CDFT-based global descriptors-ionization potential, electron affinity, HOMO-LUMO gap, hardness, softness, electronegativity and electrophilicity index of acridine derivatives for ground state as well as excited state are estimated with the help of different hybrid functionals B3LYP/6-31G (d, p), B3LYP/6-311G (d, p), B3LYP/DGDZVP and B3LYP/LANL2DZ.

View Article and Find Full Text PDF

Detection of heavy meals in aqueous media challenges worldwide research in developing particularly fast and affordable methods. Fluorescent sensors look to be an appropriate instrument for such a task, as recently they have been found to have made large progress in the detection of chemical analytes, primarily in the environment, along with biological fluids, which still suffer from not enough selectivity. In this work, we propose a new fluorescent method to selectively recognize heavy metals in an aqueous solution via employing an array of several fluorescent probes: acridine yellow, eosin, and methylene blue, which were taken as examples, being sensitive to a microsurrounding of the probe molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!