Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While spent catalysts can cause serious environmental pollution, they can be considered an essential secondary metal source due to their high critical metal grades. The formation of the amino acid-metal complex is often seen in nature, and its potential application in hydrometallurgy can be foreseen. Alanine (Ala) was first screened as the most effective type of amino acid to be used for the selective leaching of spent hydrodesulfurization catalyst (consisting of MoS and CoS supported on AlO, at 10% Mo and 2.4% Co grades). The sequential 3-step leaching (Step-1: Alkaline Ala leaching at 45°C, Step-2: Hot water leaching at 70°C, Step-3: Second alkaline Ala leaching at 45°C) was conducted where the role of Ala was found to be at least three-fold; 1) maintaining alkalinity by amino acid's buffering capacity to assist Mo leaching, 2) selectively precipitating Co by forming Co-Ala complex with a distinctive pink color, which can readily re-dissolve in hot water to be separated from spent catalyst particles. 3) Effectively suppressing unwanted dissolution of Al throughout the reaction without needing pH control. Consequently, highly metal-selective, two separate Co-rich (<1% Mo and 79% Co dissolved, Al not detected) and Mo-rich (96% Mo, 19% Co, and 2.1% Al dissolved) leachates were obtained. This study highlighted the potential utility of amino acids as non-toxic, alternative metal lixiviant as well as a metal precipitant for selective leaching of critical metals from spent hydrodesulfurization catalyst.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592186 | PMC |
http://dx.doi.org/10.3389/fchem.2022.1011518 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!