Hybrid_DBP: Prediction of DNA-binding proteins using hybrid features and convolutional neural networks.

Front Pharmacol

Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.

Published: October 2022

DNA-binding proteins (DBP) play an essential role in the genetics and evolution of organisms. A particular DNA sequence could provide underlying therapeutic benefits for hereditary diseases and cancers. Studying these proteins can timely and effectively understand their mechanistic analysis and play a particular function in disease prevention and treatment. The limitation of identifying DNA-binding protein members from the sequence database is time-consuming, costly, and ineffective. Therefore, efficient methods for improving DBP classification are crucial to disease research. In this paper, we developed a novel predictor Hybrid _DBP, which identified potential DBP by using hybrid features and convolutional neural networks. The method combines two feature selection methods, MonoDiKGap and Kmer, and then used MRMD2.0 to remove redundant features. According to the results, 94% of DBP were correctly recognized, and the accuracy of the independent test set reached 91.2%. This means Hybrid_ DBP can become a useful prediction tool for predicting DBP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589247PMC
http://dx.doi.org/10.3389/fphar.2022.1031759DOI Listing

Publication Analysis

Top Keywords

dna-binding proteins
8
hybrid features
8
features convolutional
8
convolutional neural
8
neural networks
8
dbp
6
hybrid_dbp prediction
4
prediction dna-binding
4
proteins hybrid
4
networks dna-binding
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

TP53 germline testing and hereditary cancer: how somatic events and clinical criteria affect variant detection rate.

Genome Med

January 2025

Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.

Background: Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc).

View Article and Find Full Text PDF

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Recent research has highlighted widespread dysregulation of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Here, we identify significant disruptions to 3` UTR polyadenylation in the ALS/FTLD-TDP mouse model rNLS8 that correlate with changes in gene expression and protein levels through the re-analysis of published RNA sequencing and proteomic data. A subset of these changes are shared with TDP-43 knock-down mice suggesting depletion of endogenous mouse TDP-43 is a contributor to polyadenylation dysfunction in rNLS8 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!