A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using machine learning to evaluate large-scale brain networks in patients with brain tumors: Traditional and non-traditional eloquent areas. | LitMetric

AI Article Synopsis

  • The study focuses on understanding how brain networks related to higher cognitive functions are affected in patients with brain tumors.
  • The researchers used a machine-learning platform to analyze preoperative MRI data and categorized the integrity of nine different brain networks.
  • Results showed that commonly affected networks were the central executive and default mode networks, with significant changes found even in patients who didn't exhibit neurologic deficits, suggesting the importance of non-traditional eloquent areas in preserving cognitive functions.

Article Abstract

Background: Large-scale brain networks and higher cognitive functions are frequently altered in neuro-oncology patients, but comprehensive non-invasive brain mapping is difficult to achieve in the clinical setting. The objective of our study is to evaluate traditional and non-traditional eloquent areas in brain tumor patients using a machine-learning platform.

Methods: We retrospectively included patients who underwent surgery for brain tumor resection at our Institution. Preoperative MRI with T1-weighted and DTI sequences were uploaded into the Quicktome platform. We categorized the integrity of nine large-scale brain networks: language, sensorimotor, visual, ventral attention, central executive, default mode, dorsal attention, salience and limbic. Network integrity was correlated with preoperative clinical data.

Results: One-hundred patients were included in the study. The most affected network was the central executive network (49%), followed by the default mode network (43%) and dorsal attention network (32%). Patients with preoperative deficits showed a significantly higher number of altered networks before the surgery (3.42 vs 2.19, < .001), compared to patients without deficits. Furthermore, we found that patients without neurologic deficits had an average 2.19 networks affected and 1.51 networks at-risk, with most of them being related to non-traditional eloquent areas ( < .001).

Conclusion: Our results show that large-scale brain networks are frequently affected in patients with brain tumors, even when presenting without evident neurologic deficits. In our study, the most commonly affected brain networks were related to non-traditional eloquent areas. Integrating non-invasive brain mapping machine-learning techniques into the clinical setting may help elucidate how to preserve higher-order cognitive functions associated with those networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586213PMC
http://dx.doi.org/10.1093/noajnl/vdac142DOI Listing

Publication Analysis

Top Keywords

brain networks
20
large-scale brain
16
non-traditional eloquent
16
eloquent areas
16
brain
11
networks
9
patients
9
patients brain
8
brain tumors
8
traditional non-traditional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!