The grassland in the Qinghai-Tibetan plateau provide habitat for many indigenous and introduced ruminants which perform important ecological functions that impact the whole Qinghai-Tibetan plateau ecosystem. These indigenous Tibetan ruminants have evolved several adaptive traits to withstand the severe environmental conditions, especially cold, low oxygen partial pressure, high altitude, strong UV radiation, and poor forage availability on the alpine rangelands. Despite the challenges to husbandry associated with the need for enhanced adaptation, several domesticated ruminants have also been successfully introduced to the alpine pasture regions to survive in the harsh environment. For ruminants, these challenging conditions affect not only the host, but also their commensal microbiota, especially the diversity and composition of the rumen microbiota; multiple studies have described tripartite interactions among host-environment-rumen microbiota. Thus, there are significant benefits to understanding the role of rumen microbiota in the indigenous and introduced ruminants of the Qinghai-Tibetan plateau, which has co-evolved with the host to ensure the availability of specific metabolic functions required for host survival, health, growth, and development. In this report, we systemically reviewed the dynamics of rumen microbiota in both indigenous and introduced ruminants (including gut microbiota of wild ruminants) as well as their structure, functions, and interactions with changing environmental conditions, especially low food availability, that enable survival at high altitudes. We summarized that three predominant driving factors including increased VFA production, enhanced fiber degradation, and lower methane production as indicators of higher efficiency energy harvest and nutrient utilization by microbiota that can sustain the host during nutrient deficit. These cumulative studies suggested alteration of rumen microbiota structure and functional taxa with genes that encode cellulolytic enzymes to potentially enhance nutrient and energy harvesting in response to low quality and quantity forage and cold environment. Future progress toward understanding ruminant adaptation to high altitudes will require the integration of phenotypic data with multi-omics analyses to identify host-microbiota co-evolutionary adaptations enabling survival on the Qinghai-Tibetan plateau.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589358PMC
http://dx.doi.org/10.3389/fmicb.2022.1027138DOI Listing

Publication Analysis

Top Keywords

rumen microbiota
20
qinghai-tibetan plateau
20
indigenous introduced
16
introduced ruminants
16
microbiota indigenous
12
ruminants
8
environmental conditions
8
microbiota
8
high altitudes
8
rumen
5

Similar Publications

Introduction: Postpartum dairy cows are susceptible to negative energy balance caused by decreased feed intake and the initiation of lactation. Sijunzi San, a famous Chinese traditional herbal formulation, can promote gastrointestinal digestion and absorption and improve disorders of intestinal microbiota. Therefore, we hypothesized that Sijunzi San might alleviate negative energy balance in postpartum dairy cows by modulating the structure of the rumen microbiota and enhancing its fermentation capacity.

View Article and Find Full Text PDF

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants.

J Dairy Sci

January 2025

Instituto de Investigaciones Agropecuarias - Centro Regional de Investigación Carillanca, 4880000 Vilcún, La Araucanía, Chile. Electronic address:

This publication aims to provide guidelines of the knowledge required and the potential research to be conducted in order to understand the mode of action of antimethanogenic feed additives (AMFA). In the first part of the paper, we classify AMFA into 4 categories according to their mode of action: (1) lowering dihydrogen (H) production; (2) inhibiting methanogens; (3) promoting alternative H-incorporating pathways; and (4) oxidizing methane (CH). The second part of the paper presents questions that guide the research to identify the mode of action of an AMFA on the rumen CH production from 5 different perspectives: (1) microbiology; (2) cell and molecular biochemistry; (3) microbial ecology; (4) animal metabolism; and (5) cross-cutting aspects.

View Article and Find Full Text PDF

Introduction: The gastrointestinal microbiota profoundly influences the health and productivity of animals. This study aimed to characterize microbial community structures of the mouth, gastrointestinal tract (GIT), and feces of cattle.

Methods: Samples were collected from 18 Akaushi crossbred steers at harvest from multiple locations, including the oral cavity, rumen, abomasum, duodenum, jejunum, ileum, cecum, spiral colon, distal colon, and feces.

View Article and Find Full Text PDF

This study aimed to reveal the effect of traditional Chinese herbal medicine residues (TCHMR) on growth performance, hematology, ruminal microbiota, and economic benefits of Guizhou black male goats through the fermented total mixed ration (FTMR) diet technique. A total of 22 Guizhou black male goats with an initial weight of 21.77 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!