Biogas is a promising bioenergy alternative to be recovered from waste/wastewater in the context of environmental sustainability and circular economy. However, raw biogas contains various secondary impurities such as carbon dioxide, hydrogen sulphide, siloxanes, nitrogen oxides (NOx), ammonia, and halogens. Depending on the emission rate of these biogas impurities, the importance of biogas is being hampered for its environmental, health and the detrimental effects possess by the impurities towards the downstream of the biogas users. Biogas impurities can cause different public health concerns (like pulmonary paralysis, asthma, respiratory diseases and deaths) and environmental impacts (such as global warming, climate change and their indirect impacts like drought, flooding, malnutrition and other disasters). The absence/inconsistent emission standards among countries, agencies, and other stakeholders is the other challenge that they possess during monitoring and controlling of these impurities. Different commercially available and emerging technologies are available for separating carbon dioxide (via biogas upgrading) and removing other biogas impurities. Technologies such as pressure swing adsorption, membrane separation, absorption-based techniques (water, chemical and physical organic solvents), cryogenic separation, and other emerging biotechnological platforms (like photobioreactor and biocatalysis) have been adopted in removing the impurities. This paper reviewed the main commercially available and new technologies and their performance in removing carbon dioxide (the main constituent of biogas) and other biogas impurities. Besides, the environmental and public health implications of biogas and future research perspectives are also highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589174 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e10929 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!