Polyhydroxyalkanoate (PHA) production using halophilic bacteria has been revisited because less severe operational conditions with respect to sterility can be applied, also alleviating production costs. was selected because it is a moderate halophile able to grow and attain high poly-3-hydroxybutyrate (P3HB) contents under 5-45 g/L NaCl concentrations, conditions that discourage microbial contamination. Industrial residues of the red alga after agar extraction were used as sugar platform to reduce costs associated with the carbon source. These residues still comprise a high carbohydrate content (30-40% w/w) of mainly cellulose, and their hydrolysates can be used as substrates for the bioproduction of value-added products. Preliminary assays using glucose were carried out to determine the best conditions for growth and P3HB production by in bioreactor fed-batch cultivations. Two strategies were addressed, namely nitrogen or phosphorus limitation, to promote polymer accumulation. Similar P3HB cell contents of 50% (g/g) and yields of 0.11-0.15 g /g were attained under both conditions. However, higher specific productivities were reached under P-limitation, and thus, this strategy was adopted in the subsequent study. Two organic acids, resulting from glucose metabolism, were identified to be gluconic and 2-oxoglutaric acid. Reducing the oxygen concentration in the cultivation medium to 5% sat was found to minimize organic acid production and enhance the yield of polymer on sugar to 0.20 g/g. Finally, fed-batch cultivations using hydrolysates as the only C-source achieved an overall volumetric productivity of 0.47 g/(L.h), 40% polymer accumulation, and negligible gluconic acid production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588912PMC
http://dx.doi.org/10.3389/fbioe.2022.934432DOI Listing

Publication Analysis

Top Keywords

industrial residues
8
gluconic acid
8
fed-batch cultivations
8
polymer accumulation
8
acid production
8
production
5
red algae
4
algae industrial
4
residues sustainable
4
sustainable carbon
4

Similar Publications

Coptisine improves LPS-induced anxiety-like behaviors by regulating the Warburg effect in microglia via PKM2.

Biomed Pharmacother

January 2025

Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China. Electronic address:

Neuroinflammation mediated by microglia is considered the primary cause and pathological process of anxiety. Abnormal glycolysis of microglia is observed during microglia activation. However, whether regulating the Warburg effect in microglia can effectively intervene anxiety and its potential mechanisms have not been elucidated.

View Article and Find Full Text PDF

In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.

View Article and Find Full Text PDF

Further Characterization of Lipase B from Ustilago maydis Expressed in Pichia pastoris: a Member of the Candida antarctica Lipase B-like Superfamily.

Appl Biochem Biotechnol

January 2025

Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.

Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C.

View Article and Find Full Text PDF

Active learning-assisted directed evolution.

Nat Commun

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

Directed evolution (DE) is a powerful tool to optimize protein fitness for a specific application. However, DE can be inefficient when mutations exhibit non-additive, or epistatic, behavior. Here, we present Active Learning-assisted Directed Evolution (ALDE), an iterative machine learning-assisted DE workflow that leverages uncertainty quantification to explore the search space of proteins more efficiently than current DE methods.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!