Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lisinopril is an antihypertensive drug with poor intestinal permeability. Enhancement of intestinal absorption depends on a clear understanding of the permeation pathways and absorption mechanisms. Unfortunately, these are not fully elucidated for lisinopril. Accordingly, the aim was to determine lisinopril permeation pathways and obstacles limiting membrane transport with subsequent nomination of appropriate permeation enhancers. This employed an in situ rabbit intestinal perfusion technique, which revealed site-dependent absorptive clearance (PeA/L) from a lisinopril simple solution (5 μg/ml), with paracellular absorption playing a role. Regional drug permeability ranked as colon> duodenum> jejunum> ileum opposing intestinal expression rank of P-glycoprotein (P-gp) efflux transporters. Duodenal and jejunal perfusion of a higher lisinopril concentration (50 μg/ml) reflected saturable absorption, suggesting carrier-mediated transport. The effect of piperine and verapamil as P-gp inhibitors on intestinal absorption of lisinopril was investigated. Coperfusion with either piperine or verapamil significantly enhanced lisinopril absorption, with enhancement being dominant in the ileum segment. This supported the contribution of P-gp transporters to poor lisinopril permeability. On the other hand, coperfusion of lisinopril with zinc acetate dihydrate significantly multiplied lisinopril PeA/L by 2.3- and 6.6-fold in duodenum and ileum segments, respectively, through magnifying intestinal water flux. The study explored the barriers limiting lisinopril intestinal absorption. Moreover, the study exposed clinically relevant lisinopril interactions with common coadministered cargos that should be considered for an appropriate lisinopril regimen. However, this requires further in vivo verification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdd.2336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!