The probability distribution function of photon path length in a scattering medium contains valuable information on that medium. While strongly scattering optically thick media have been extensively studied, in particular, with resort to the diffusion approximation, optically thin media have received much less attention. Here, we derive the probability distribution functions for the lengths of singly- and twice-scattered photon paths in an isotropically scattering slab of optical thickness τ, for both reflected and transmitted photons. We show that, in the case of an optically thin slab, these photons dominate the overall response of the medium. We confirm that the second moment of the distribution deviates from the ballistic limit in the case of collimated illumination. Interestingly, we show that under diffuse illumination, the second moment of the distribution is dominated by unscattered transmitted photons, hence is proportional to lnτ, and independent of the phase function. Higher moments of order n (≥3) scale as Hτ. When only reflected or transmitted photons are considered, the second moment scales as Hτ, whatever the illumination and viewing conditions. This provides direct access to τ. These theoretical results are extensively supported by Monte Carlo ray-tracing simulations. Extension to anisotropic scattering using these same simulations shows that the results hold, given a scaling factor for collimated illumination, and without any dependence on the phase function for diffuse illumination. These results overall demonstrate that the optical thickness of an optically thin slab can be estimated from the second moment of the distribution. Along with the fact that under diffuse illumination the geometrical thickness can be derived from the first moment of the distribution, this proves that the extinction coefficient of the medium can be estimated from the combination of both moments. This study thus opens new perspectives for non-invasive characterization of optically thin media either in the laboratory or by remote sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.464033DOI Listing

Publication Analysis

Top Keywords

optically thin
20
second moment
16
moment distribution
16
transmitted photons
12
diffuse illumination
12
photon path
8
probability distribution
8
thin media
8
optical thickness
8
reflected transmitted
8

Similar Publications

High Performance of Cs2AgBiBr6 Perovskite-based Photodetectors by Adding DEAC.

Chemistry

December 2024

East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.

Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.

View Article and Find Full Text PDF

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Talbot effect based sensor measuring grating period change in subwavelength range.

Sci Rep

December 2024

Physical Research Laboratory, Ahmedabad, Gujarat, 380009, India.

Talbot length, the distance between two consecutive self-image planes along the propagation axis for a periodic diffraction object (grating) illuminated by a plane wave, depends on the period of the object and the wavelength of illumination. This property makes the Talbot effect a straightforward technique for measuring the period of a periodic object (grating) by accurately determining the Talbot length for a given illumination wavelength. However, since the Talbot length scale is proportional to the square of the grating period, traditional Talbot techniques face challenges when dealing with smaller grating periods and minor changes in the grating period.

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

Transparent thin-film heaters have sparked great interest in both the scientific and industrial sectors due to their critical role in various technologies, including smart windows, displays, actuators, and sensors. In this review, we summarize the structural design, fabrication methods, properties, and materials used in thin-film heaters. We also discuss methods to improve their efficiency and recent advancements in the field, and provide insights into the market size, growth, and future outlook for thin-film heaters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!