Highly linear electro-optic modulators are key components in analog microwave photonic links, offering on-chip direct mixing of optical and RF fields. In this work, we demonstrate a monolithic integrated Michelson interferometer modulator on thin-film lithium niobate (LN), that achieves linearized performance by modulating Bragg grating reflectors placed at the end of Michelson arms. The modulator utilizes spiral-shaped waveguide Bragg gratings on Z-cut LN with top and bottom electrodes to realize extensive reflectors, essential for linearized performance, in a highly integrated form. Optical waveguides are realized using rib etching of LN with precisely engineered bottom and top cladding layers made of silicon dioxide and SU-8 polymer, respectively. The compact design fits a 3 mm long grating in an 80 µm × 80 µm area, achieving a broad operating bandwidth up to 18 GHz. A spurious free dynamic range (SFDR) of 101.2 dB·Hz is demonstrated at 1 GHz, compared to 91.5 dB·Hz for a reference Mach-Zehnder modulator fabricated on the same chip. Further enhancement in SFDR could be achieved by reducing fiber-to-chip coupling loss. The proposed demonstration could significantly improve the linearity of analog modulator-based integrated optical links.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.472673DOI Listing

Publication Analysis

Top Keywords

highly linear
8
lithium niobate
8
michelson interferometer
8
bragg grating
8
grating reflectors
8
linearized performance
8
linear lithium
4
niobate michelson
4
interferometer modulators
4
modulators assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!