In this paper, we present a Mueller matrix imaging system consisting of a spatially modulated polarization light source (SMPL) and a dual division-of-focal-plane (DoFP) polarimeters as the PSA and 2D detector. The system does not contain moving parts such as a rotating stage, which leads to more robust and reliable operations for applications in hostile settings. By taking Muller matrix images at variable distances between the SMPL and the target, we examine in details errors due to different spatial distributions in angle and intensity of different polarized lights. A calibration method is proposed to reduce such errors introduced by SMPL. The performances of the new imaging technique and the calibration method are tested in Mueller matrix imaging of different samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.474360 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, PR China.
A clinical isolate, R131, was isolated from the peritoneal swab of a patient who suffered from ruptured appendicitis with abscess and gangrene in Hong Kong in 2018. Cells are facultatively anaerobic, non-motile, Gram-positive coccobacilli. Colonies were small, grey, semi-translucent, low convex and alpha-haemolytic.
View Article and Find Full Text PDFOptical polarization is three-dimensional (3-D). Its complete information is described by the nine-component generalized Stokes vector (GSV). However, existing Stokes polarimetry and its design theory are primarily based on the paraxial four-component Stokes vector and 4 × 4 Mueller matrices.
View Article and Find Full Text PDFPurpose: Pre-clinical studies have demonstrated direct influences of the autonomic nervous system (ANS) on the immune system. However, it remains unknown if connections between the peripheral ANS and immune system exist in humans and contribute to the development of chronic inflammatory disease. This study had three aims: 1.
View Article and Find Full Text PDFJ Biophotonics
January 2025
School of Optoelectronics, Zhejiang University, Hangzhou, China.
The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
University of Arizona, College of Biomedical Engineering, Tucson, Arizona, United States.
Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!