In this work, we propose the Fast Polarized Wave Propagation Method (FPWPM), which is an efficient method for vector wave optical simulations of microoptics. The FPWPM is capable of handling comparably large simulation volumes while maintaining quick runtime. This allows for real-world application of this method for the rapid development process of 3D-printed microoptics. By comparison to established routines like the rigorous coupled wave analysis (RCWA) or the Richards-Wolf-Integral, accuracy and superior runtime efficiency of the FPWPM are demonstrated by simulation of interfaces, gratings, and lenses. By considering polarization in simulations, the FPWPM facilitates the analysis of optical elements which employ this property of electromagnetic waves as a feature in their optical design, e.g., diffractive elements, gratings, or optics with high angle of incidence like high numerical aperture lenses.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.469178DOI Listing

Publication Analysis

Top Keywords

3d-printed microoptics
8
vector wave
8
wave propagation
8
propagation method
8
fast algorithm
4
algorithm simulation
4
simulation 3d-printed
4
microoptics based
4
based vector
4
wave
4

Similar Publications

In this paper, we present a method for micro-endoscopic topography measurement utilizing two-wavelength holography. Initially, we evaluate the inter-core dispersion and cross-talk of two commercially available imaging fiber bundles (CFBs) and introduce the concept of virtual surface roughness as a limiting factor of achievable measurement resolution. Subsequently, we describe a micro-endoscope setup incorporating 3D-printed micro-optics, resulting in a total diameter of less than 450 µm.

View Article and Find Full Text PDF

Hybrid glasses derived from meltable metal-organic frameworks (MOFs) promise to combine the intriguing properties of MOFs with the universal processing ability of glasses. However, the shaping of hybrid glasses in their liquid state - in analogy to conventional glass processing - has been elusive thus far. Here, we present optical-quality glasses derived from the zeolitic imidazole framework ZIF-62 in the form of cm-scale objects.

View Article and Find Full Text PDF

3D printed microoptics have become important tools for miniature endoscopy, novel CMOS-based on-chip sensors, OCT-fibers, among others. Until now, only image quality and spot diagrams were available for optical characterization. Here, we introduce Ronchi interferometry as ultracompact and quick quantitative analysis method for measuring the wavefront aberrations after propagating coherent light through the 3D printed miniature optics.

View Article and Find Full Text PDF

Microscale 3D-printing has revolutionized micro-optical applications ranging from endoscopy, imaging, to quantum technologies. In all these applications, miniaturization is key, and in combination with the nearly unlimited design space, it is opening novel, to the best of our knowledge, avenues. Here, we push the limits of miniaturization and durability by realizing the first fiber laser system with intra-cavity on-fiber 3D-printed optics.

View Article and Find Full Text PDF

The use of 3D printed micro-optical components has enabled the miniaturization of various optical systems, including those based on single photon sources. However, in order to enhance their usability and performance, it is crucial to gain insights into the physical effects influencing these systems via computational approaches. As there is no universal numerical method which can be efficiently applied in all cases, combining different techniques becomes essential to reduce modeling and simulation effort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!