Herein is analyzed how an electric field can induce a band gap shift in NiO films to generate an enhancement in their third-order optical nonlinearities. An electrochromic effect seems to be responsible for changes in absorbance and modification in off-resonance nonlinear refractive index. The optical Kerr effect was determined as the dominant physical mechanism emerging from the third-order optical susceptibility processes present in a nanosecond two-wave mixing configuration at 532 nm wavelength. Absence of any important multi-photonic absorption was validated by the constant trace of high-irradiance optical transmittance in single-beam mode. The inspection of nonlinear optical signals allowed us to propose an exclusive disjunctive logic gate assisted by an electrochromic effect in an optical Kerr gate. Asymmetric encryption by our XOR system with the influence of a switchable probe beam transmittance and electrical signals in the sample was studied. Immediate applications for developing multifunctional quantum systems driven by dynamic parameters in electrochromic and nonlinear optical materials were highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.456255DOI Listing

Publication Analysis

Top Keywords

optical kerr
12
asymmetric encryption
8
optical
8
third-order optical
8
nonlinear optical
8
encryption optical
4
kerr nonlinearities
4
nonlinearities exhibited
4
electrochromic
4
exhibited electrochromic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!