Octave-wide frequency combs in microresonators are essential for self-referencing. However, it is difficult for the small-size and high-repetition-rate microresonators to achieve perfect soliton modelocking over the broad frequency range due to the detrimental impact of dispersion. Here we examine the stability of the soliton states consisting of one hundred modes in silicon-nitride microresonators with the one-THz free spectral range. We report the coexistence of fast and slow solitons in a narrow detuning range, which is surrounded on either side by the breather states. We decompose the breather combs into a sequence of sub-combs with different carrier-envelope offset frequencies. The large detuning breathers have a high frequency of oscillations associated with the perturbation extending across the whole microresonator. The small detuning breathers create oscillations localised on the soliton core and can undergo the period-doubling bifurcation, which triggers a sequence of intense sub-combs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.473008 | DOI Listing |
We demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency ( ) and the repetition rate of the comb in place ( ), eliminating the need for an external RF oscillator.
View Article and Find Full Text PDFChirp modulation can generate a relatively flat electro-optic frequency comb (EO comb) and offers the advantage of frequency reconfigurability, demonstrating significant potential in high-precision sensing and absorption spectroscopy measurements. However, nonresonant devices such as waveguides are susceptible to limitations in modulation efficiency and bandwidth during electro-optic modulation. In this paper, by utilizing chirp modulation resonance mode, we have realized an EO comb based on a lithium niobate resonator with small tooth spacing and high flatness.
View Article and Find Full Text PDFA three-sectioned, bidirectionally coupled, tunable, optical comb source is presented. The photonic integrated circuit (PIC) consists of a gain section, a slotted mirror section and a Fabry-Perot (FP) section. Optical frequency combs (OFCs) are produced by gain switching the FP section via a high power radio frequency (RF) signal.
View Article and Find Full Text PDFWe developed a scanning dual-comb spectroscopic microscopy (S-DCSM) system to acquire multidimensional optical information of transparent or semi-transparent samples. The system demonstrated the capability to perform spectral imaging of absorbance, optical phase, optical thickness, linear dichroism, and birefringence within the spectral range covered by optical frequency combs (OFCs). The spatial distribution of optical thickness in HeLa cells was measured as 8.
View Article and Find Full Text PDFMid-infrared dual-comb spectroscopy offers significant advantages by combining the high sensitivity of mid-infrared spectroscopy with the high spectral resolution and rapid acquisition of the dual-comb method. However, its effective resolution, constrained by the inherent comb line spacing, hinders its ability to resolve narrow absorption features, common in critical applications such as sub-Doppler spectroscopy, low-pressure gas analysis, and construction of the atmospheric profile. To address this challenge, we present a synchronous offset frequency tuning method for the mid-infrared dual-comb system to improve effective resolution far beyond comb line spacing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!