A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermally assisted fabrication of nonlinear photonic structures in lithium niobate with femtosecond laser pulses. | LitMetric

Engineered domain structures play an essential role in nonlinear optics for quasi-phase-matched parametric processes. Pyroelectric field-assisted domain inversion with focused femtosecond laser pulses is a promising approach to create arbitrary two-dimensional nonlinear photonic structures in a large volume without externally applied electrical fields. We fabricate lattices of ferroelectric domains by patterning lithium niobate crystals with femtosecond laser pulses and then heating them to elevated temperatures. After cooling to room temperature, domains form below and above the laser-induced seeds. We investigate the effect of temperature and seed spacing on the number and size of inverted domains. In a temperature range of 220 °C-300 °C all domains are inverted in a two-dimensional lattice with periods of 15 µm × 6.3 µm. Smaller lattice periods result in a smaller fraction of inverted domains. Measurements with conducting, nonconducting, and short-circuited crystal surfaces reveal the influence of surface charges during the domain formation process. From the obtained domain widths and spacings, we calculate the effective nonlinear coefficient of quasi-phase-matched second-harmonic generation in two-dimensional nonlinear photonic structures.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.470716DOI Listing

Publication Analysis

Top Keywords

nonlinear photonic
12
photonic structures
12
femtosecond laser
12
laser pulses
12
lithium niobate
8
two-dimensional nonlinear
8
inverted domains
8
lattice periods
8
nonlinear
5
domains
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!