Development and Validation of a Bioinformatic Workflow for the Rapid Detection of Viruses in Biosecurity.

Viruses

Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand.

Published: September 2022

The field of biosecurity has greatly benefited from the widespread adoption of high-throughput sequencing technologies, for its ability to deeply query plant and animal samples for pathogens for which no tests exist. However, the bioinformatics analysis tools designed for rapid analysis of these sequencing datasets are not developed with this application in mind, limiting the ability of diagnosticians to standardise their workflows using published tool kits. We sought to assess previously published bioinformatic tools for their ability to identify plant- and animal-infecting viruses while distinguishing from the host genetic material. We discovered that many of the current generation of virus-detection pipelines are not adequate for this task, being outperformed by more generic classification tools. We created synthetic MinION and HiSeq libraries simulating plant and animal infections of economically important viruses and assessed a series of tools for their suitability for rapid and accurate detection of infection, and further tested the top performing tools against the VIROMOCK Challenge dataset to ensure that our findings were reproducible when compared with international standards. Our work demonstrated that several methods provide sensitive and specific detection of agriculturally important viruses in a timely manner and provides a key piece of ground truthing for method development in this space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610911PMC
http://dx.doi.org/10.3390/v14102163DOI Listing

Publication Analysis

Top Keywords

plant animal
8
tools
5
development validation
4
validation bioinformatic
4
bioinformatic workflow
4
workflow rapid
4
rapid detection
4
viruses
4
detection viruses
4
viruses biosecurity
4

Similar Publications

Djulis ( Koidz.) is an endemic cereal plant to Taiwan that has been cultivated by Taiwanese aborigines for hundreds of years. Djulis Djulis is a well-known ruby cereal because it contains betanin and exhibits strong antioxidant activity.

View Article and Find Full Text PDF

Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or , but the keys to some important biomedical questions may simply not be found in these.

View Article and Find Full Text PDF

Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models and .

View Article and Find Full Text PDF

One health agriculture: Heat stress mitigation dilemma in agriculture.

One Health

June 2025

Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15, 6800 Hódmezővásárhely, Hungary.

The concept of One Health was developed as a successful strategy for addressing global crises that impact the health of animals, humans, and plants. The agriculture industry is facing a huge dilemma due to climate change and the impacts of heat stress, which might pose a threat to mankind in the future. In order to enhance the management of heat stress in the agriculture sector (Agri-heat stress), we suggest implementing the One Health approach.

View Article and Find Full Text PDF

Pollination ecotypes and the origin of plant species.

Proc Biol Sci

January 2025

Centre for Functional Biodiversity, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa.

Ecological niche shifts are a key driver of phenotypic divergence and contribute to isolating barriers among lineages. For many groups of organisms, the history of these shifts and associated trait-environment correlations are well-documented at the macroevolutionary level. However, the processes that generate these patterns are initiated below the species level, often by the formation of ecotypes in contrasting environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!