Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus, causes adult T-cell leukemia-lymphoma, HTLV-1 associated myelopathy/tropical spastic paraparesis, and HTLV-1 uveitis. Currently, no antiretroviral therapies or vaccines are available for HTLV-1 infection. This study aimed to develop an antibody against the HTLV-1 envelope protein (Env) and apply it to a near-infrared photoimmuno-antimicrobial strategy (NIR-PIAS) to eliminate HTLV-1 infected cells. We established mouse monoclonal antibodies (mAbs) against HTLV-1 Env by immunization with a complex of liposome and the recombinant protein. Detailed epitope mapping revealed that one of the mAbs bound to the proline-rich region of gp46 and exhibited no obvious neutralizing activity to inhibit viral infection. Instead, the mAb was rarely internalized intracellularly and remained on the cell surface of HTLV-1-infected cells. The antibody conjugated to the photosensitive dye IRDye700Dx recognized HTLV-1 infected cells and killed them following NIR irradiation. These results suggest that the novel mAb and NIR-PIAS could be developed as a new targeted therapeutic tool against HTLV-1 infected cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608601PMC
http://dx.doi.org/10.3390/v14102153DOI Listing

Publication Analysis

Top Keywords

htlv-1 infected
12
infected cells
12
htlv-1
10
htlv-1 envelope
8
near-infrared photoimmuno-antimicrobial
8
photoimmuno-antimicrobial strategy
8
development monoclonal
4
monoclonal antibody
4
antibody targeting
4
targeting htlv-1
4

Similar Publications

The reasons for the low frequency of anti-Ro/SS-A antibody in patients with HTLV-1-associated myelopathy complicated with Sjögren's syndrome (SS) are unclear. In this study, we investigated whether HTLV-1-infected T cells can act directly on B cells and suppress B cells' production of antibodies, including anti-Ro/SS-A antibody. For this purpose, we established an in vitro T-cell-free B-cell antibody production system.

View Article and Find Full Text PDF

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

Evaluation of QuantiFERON-TB Gold for the Diagnosis of Infection in HTLV-1-Infected Patients.

Viruses

November 2024

Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz-BA), Salvador 40296-710, Bahia, Brazil.

Human T-cell leukemia virus type 1 (HTLV-1) is associated with an increased risk of tuberculosis (TB). This study aimed to evaluate the performance of the QuantiFERON-TB Gold (QFT) test for the diagnosis of (MTB) infection in HTLV-1-infected individuals. HTLV-1-infected participants were divided into four groups: HTLV-1-infected individuals with a history of tuberculosis (HTLV/TB), individuals with positive HTLV and tuberculin skin tests (HTLV/TST+) or negative TST (HTLV/TST-), and HTLV-1-negative individuals with positive TST results (HN/TST+).

View Article and Find Full Text PDF

Integrative analysis of ATAC-seq and RNA-seq for cells infected by human T-cell leukemia virus type 1.

PLoS Comput Biol

January 2025

Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy (HAM) after a long latent period in a fraction of infected individuals. These HTLV-1-infected cells typically have phenotypes similar to that of CD4+T cells, but the cell status is not well understood. To extract the inherent information of HTLV-1-infected CD4+ cells, we integratively analyzed the ATAC-seq and RNA-seq data of the infected cells.

View Article and Find Full Text PDF

Isolation of Viral Biofilms From HTLV-1 Chronically Infected T Cells and Integrity Analysis.

Bio Protoc

December 2024

Infectious Disease Research Institute of Montpellier (IRIM), UMR 9004 CNRS, University of Montpellier, Montpellier, France.

The human T-lymphotropic virus type-1 (HTLV-1) is an oncogenic retrovirus that predominantly spreads through cell-to-cell contact due to the limited infectivity of cell-free viruses. Among various modes of intercellular transmission, HTLV-1 biofilms emerge as adhesive structures, polarized at the cell surface, which encapsulate virions within a protective matrix. This biofilm is supposed to facilitate simultaneous virion delivery during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!