Background: Real-world evidence on the effectiveness of inactivated vaccines against the Delta and Omicron (BA.2.38) variants remains scarce.
Methods: A retrospective cohort study was conducted to estimate the adjusted vaccine effectiveness (aVE) of one, two, and three doses of inactivated vaccines in attenuating pneumonia, severe COVID-19, and the duration of viral shedding in Delta and Omicron cases using modified Poisson and linear regression as appropriate.
Results: A total of 561 COVID-19 cases were included (59.2% Delta and 40.8% Omicron). In total, 56.4% (184) of Delta and 12.0% (27) of Omicron cases had COVID-19 pneumonia. In the two-dose vaccinated population, 1.4% of Delta and 89.1% of Omicron cases were vaccinated for more than 6 months. In Delta cases, the two-dose aVE was 52% (95% confidence interval, 39-63%) against pneumonia and 61% (15%, 82%) against severe disease. Two-dose vaccination reduced the duration of viral shedding in Delta cases, but not in booster-vaccinated Omicron cases. In Omicron cases, three-dose aVE was 68% (18%, 88%) effective against pneumonia, while two-dose vaccination was insufficient for Omicron. E-values were calculated, and the E-values confirmed the robustness of our findings.
Conclusions: In Delta cases, two-dose vaccination within 6 months reduced pneumonia, disease severity, and the duration of viral shedding. Booster vaccination provided a high level of protection against pneumonia with Omicron and should be prioritized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611172 | PMC |
http://dx.doi.org/10.3390/vaccines10101753 | DOI Listing |
IJID Reg
March 2025
Laboratory of Respiratory Viruses, Exanthematous and Enteroviruses and Viral Emergencies, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
Unlabelled: The SARS-CoV-2 JN.1 lineage emerged in late 2023 and quickly replaced the XBB lineages, becoming the predominant Omicron variant worldwide in 2024. We estimate the epidemiologic impact of this SARS-CoV-2 lineage replacement in Brazil and we further assessed the cross-reactive neutralizing antibody (NAb) responses in a cohort of convalescent Brazilian patients infected during 2023.
View Article and Find Full Text PDFPediatr Infect Dis J
January 2025
From the Department of Pediatrics, Niigata University, Graduate School of Medical and Dental Sciences, Niigata, Japan.
Background: The spread of the BA.5 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has increased the number of hospitalized children. However, the impact of the spread of new omicron subvariants in children remains poorly described.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
January 2025
Division of Infectious Diseases & Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Background: The increase in severe acute respiratory coronavirus virus 2 (SARS-CoV-2) cases due to the omicron strain led to reduced acute care hospital beds at the Veterans Administration (VA) Hospital, North Texas; veterans with non-severe coronavirus disease 2019 (COVID-19) disease were managed at a community living center (CLC), a VA nursing home. The management of non-severe COVID-19 in VA nursing homes has not been extensively described.
Methods: We describe resident characteristics and outcomes, and infection control practices implemented during 2 COVID-19 outbreak periods (January 12-February 15, 2022, June 28-July 14, 2023).
Hum Vaccin Immunother
December 2025
Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA.
Safety, immunogenicity, and effectiveness of an mRNA-1273 50-μg booster were evaluated in adolescents (12-17 years), with and without pre-booster SARS-CoV-2 infection. Participants who had received the 2-dose mRNA-1273 100-µg primary series in the TeenCOVE trial (NCT04649151) were offered the mRNA-1273 50-μg booster. Primary objectives included safety and inference of effectiveness by establishing noninferiority of neutralizing antibody (nAb) responses after the booster compared with the nAb post-primary series of mRNA-1273 among young adults in COVE (NCT04470427).
View Article and Find Full Text PDFNat Immunol
January 2025
Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA.
Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2 cell subsets, which was distinct from that of ancestral cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!