The (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611692 | PMC |
http://dx.doi.org/10.3390/vaccines10101717 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.
View Article and Find Full Text PDFSci Immunol
January 2025
Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
Background: Nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNPs) have emerged as a promising vaccine strategy, especially for COVID-19. While the LNPs protect mRNA from degradation and efficiently deliver the mRNA to antigen-presenting cells, the effect of lipid composition on the immunogenicity and protective efficacy of mRNA/LNP vaccines is not well characterized. Studies on using the mRNA/LNP platform for vaccines have largely focused on the nucleic acid cargo with less attention paid to the LNP vehicle.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China. Electronic address:
The continuing emergence of SARS-CoV-2 variants has posed a great challenge to vaccination strategies. Therefore, the development of broad-spectrum protective antibodies and universal vaccines remains urgently needed. In this study, we isolated two broadly neutralizing mAbs, nCoV-R48 and nCoV-R70, from a vaccinated person.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea. Electronic address:
Single-cycle viruses hold great promise as fish viral vaccines due to their high protective efficacy. Although the efficacy of the vaccine in olive flounder and rainbow trout has been proven through previous research, safety must be additionally proven considering the environment of use for commercialization. This study comprehensively assesses the safety of rVHSV-GΔTM and its impact on both the host and the surrounding environment, including the coastal habitat of nearby species and seawater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!