We applied a polarization filter array and high-speed camera to the imaging of biological tissues during large, dynamic deformations at 7000 frames per second. The results are compared to previous measurements of similar specimens using a rotating polarizer imaging system. The polarization filter eliminates motion blur and temporal bias from the reconstructed collagen fiber alignment angle and retardation images. The polarization imaging configuration dose pose additional challenges due to the need for calibration of the polarization filter array for a given sample in the same lighting conditions as during the measurement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607302 | PMC |
http://dx.doi.org/10.3390/s22208000 | DOI Listing |
Nat Nanotechnol
January 2025
Department of Bioengineering, University of California, Riverside, Riverside, CA, USA.
The pervasive model for a solvated, ion-filled nanopore is often a resistor in parallel with a capacitor. For conical nanopore geometries, here we propose the inclusion of a Warburg-like element, which is necessary to explain otherwise anomalous observations such as negative capacitance and low-pass filtering of translocation events (we term this phenomenon as Warburg filtering). The negative capacitance observed here has long equilibration times and memory (that is, mem-capacitance) at negative voltages.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing, China.
This study proposes a spin-valley electron beam splitter based on the inner-edge states in a topological-insulator junction, which can allocate different ratios of spin-valley current outputs. Since the inner-edge states are associated with the "nearest path selection" mechanism, this device is referred to as the interface-modulating spin-valley electron beam splitter. Additionally, two perfect spin-valley filters in similar topological-insulator junctions are established in this study.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Peking University, Center for Carbon - based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Beijing, 100871, CHINA.
Chirality induced spin selectivity (CISS) effect implies the relationship between chirality and magnetism, attracting extensive attention in the fields of physics, chemistry and biology. Since it was first discovered with photoemission method in 1999, the CISS effect has been investigated and measured by a variety of methods. Among different means of measurements, scanning probe microscopy (SPM) as a powerful tool to explore the CISS effect, can directly measure and present the spin filtering property of chiral molecules in electron transport.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electronics, Carleton University, Ottawa, ON, K1S 5B6, Canada.
In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.
View Article and Find Full Text PDFSmall
December 2024
School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!