A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

WiFi Indoor Location Based on Area Segmentation. | LitMetric

WiFi Indoor Location Based on Area Segmentation.

Sensors (Basel)

School of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161000, China.

Published: October 2022

Indoor positioning is the basic requirement of future positioning services, and high-precision, low-cost indoor positioning algorithms are the key technology to achieve this goal. Different from outdoor maps, indoor data has the characteristic of uneven distribution and close correlation. In areas with low data density, in order to achieve a high-precision positioning effect, the positioning time will be correspondingly longer, but this is not necessary. The instability of WiFi leads to the introduction of noise when collecting data, which reduces the overall performance of the positioning system, so denoising is very necessary. For the above problems, a positioning system using the DBSCAN algorithm to segment regions and realize regionalized positioning is proposed. DBSCAN algorithm not only divides the dataset into core points and edge points, but also divides part of the data into noise points to achieve the effect of denoising. In the core part, the dimensionality of the data is reduced by using stacking auto-encoders (SAE), and the localization task is accomplished by using a deep neural network (DNN) with an adaptive learning rate. At the edge points, the random forest (RF) algorithm is used to complete the localization task. Finally, the proposed architecture is verified on the UJIIndoorLoc dataset. The experimental results show that our positioning accuracy does not exceed 1.5 m with a probability of less than 87.2% at the edge point, and the time is only 32 ms; the positioning accuracy does not exceed 1.5 m with a probability of less than 98.8% at the core point. Compared with indoor positioning algorithms such as multi-layer perceptron and K Nearest Neighbors (KNN), good results have been achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611004PMC
http://dx.doi.org/10.3390/s22207920DOI Listing

Publication Analysis

Top Keywords

indoor positioning
12
positioning
11
positioning algorithms
8
positioning system
8
dbscan algorithm
8
edge points
8
localization task
8
positioning accuracy
8
accuracy exceed
8
exceed probability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!