Deblurring of Sound Source Orientation Recognition Based on Deep Neural Network.

Sensors (Basel)

Explosion and Seismic Sensing Research Center, Advanced Technology Institute, Zhejiang University, Hangzhou 301127, China.

Published: October 2022

Underwater target detection and identification technology are currently two of the most important research directions in the information disciplines. Traditionally, underwater target detection technology has struggled to meet the needs of current engineering. However, due to the large manifold error of the underwater sonar array and the complexity of ensuring long-term signal stability, traditional high-resolution array signal processing methods are not ideal for practical underwater applications. In conventional beamforming methods, when the signal-to-noise ratio is lower than -43.05 dB, the general direction can only be vaguely identified in the general direction. To address the above challenges, this paper proposes a beamforming method based on a deep neural network. Through preprocessing, the space-time domain of the target sound signal is converted into two-dimensional data in the angle-time domain. Subsequently, we trained the network with enough sample datasets. Finally, high-resolution recognition and prediction of two-dimensional images are realized. The results of the test dataset in this paper demonstrate the effectiveness of the proposed method, with a minimum signal-to-noise ratio of -48 dB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611178PMC
http://dx.doi.org/10.3390/s22207909DOI Listing

Publication Analysis

Top Keywords

based deep
8
deep neural
8
neural network
8
underwater target
8
target detection
8
signal-to-noise ratio
8
general direction
8
deblurring sound
4
sound source
4
source orientation
4

Similar Publications

Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.

View Article and Find Full Text PDF

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

Objective: To design a deep learning-based model for early screening of diabetic retinopathy, predict the condition, and provide interpretable justifications.

Methods: The experiment's model structure is designed based on the Vision Transformer architecture which was initiated in March 2023 and the first version was produced in July 2023 at Affiliated Hospital of Hangzhou Normal University. We use the publicly available EyePACS dataset as input to train the model.

View Article and Find Full Text PDF

Background: Traditional liver fibrosis staging via percutaneous biopsy suffers from sampling bias and variable inter-pathologist agreement, highlighting the need for more objective techniques. Deep learning models for disease staging from medical images have shown potential to decrease diagnostic variability, with recent weakly supervised learning strategies showing promising results even with limited manual annotation.

Purpose: To study the clustering-constrained attention multiple instance learning (CLAM) approach for staging liver fibrosis on trichrome whole slide images (WSIs) of children and young adults.

View Article and Find Full Text PDF

The effect of deep magnetic stimulation on the cardiac-brain axis post-sleep deprivation: a pilot study.

Front Neurosci

January 2025

Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.

Introduction: Sleep deprivation (SD) significantly disrupts the homeostasis of the cardiac-brain axis, yet the neuromodulation effects of deep magnetic stimulation (DMS), a non-invasive and safe method, remain poorly understood.

Methods: Sixty healthy adult males were recruited for a 36-h SD study, they were assigned to the DMS group or the control group according to their individual willing. All individuals underwent heart sound measurements and functional magnetic resonance imaging scans at the experiment's onset and terminal points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!