Cardiovascular diseases (CVDs) are one of the leading members of non-communicable diseases. An early diagnosis is essential for effective treatment, to reduce hospitalization time and health care costs. Nowadays, an exercise stress test on an ergometer is used to identify CVDs. To improve the accuracy of diagnostics, the hemodynamic status and parameters of a person can be investigated. For hemodynamic management, thoracic electrical bioimpedance has recently been used. This technique offers beat-to-beat stroke volume calculation but suffers from an artifact-sensitive signal that makes such measurements difficult during movement. We propose a new method based on a gated recurrent unit (GRU) neural network and the ECG signal to improve the measurement of bioimpedance signals, reduce artifacts and calculate hemodynamic parameters. We conducted a study with 23 subjects. The new approach is compared to ensemble averaging, scaled Fourier linear combiner, adaptive filter, and simple neural networks. The GRU neural network performs better with single artifact events than shallow neural networks (mean error -0.0244, mean square error 0.0181 for normalized stroke volume). The GRU network is superior to other algorithms using time-correlated data for the exercise stress test.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612153 | PMC |
http://dx.doi.org/10.3390/s22207883 | DOI Listing |
Sci Rep
December 2024
School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar, 161006, China.
A prediction model of the pig house environment based on Bayesian optimization (BO), squeeze and excitation block (SE), convolutional neural network (CNN) and gated recurrent unit (GRU) is proposed to improve the prediction accuracy and animal welfare and take control measures in advance. To ensure the optimal model configuration, the model uses a BO algorithm to fine-tune hyper-parameters, such as the number of GRUs, initial learning rate and L2 normal form regularization factor. The environmental data are fed into the SE-CNN block, which extracts the local features of the data through convolutional operations.
View Article and Find Full Text PDFJ Ultrasound Med
December 2024
Department of Computer Science and Engineering, SRM Institute of Science and Technology, Vadapalani Campus, Chennai, India.
Objectives: Birthweight prediction in fetal development presents a challenge in direct measurement and often depends on empirical formulas based on the clinician's experience. Existing methods suffer from low accuracy and high execution times, limiting their clinical effectiveness. This study aims to introduce a novel approach integrating feature-wise linear modulation (FiLM), gated recurrent unit (GRU), and Attention network to improve birthweight prediction using ultrasound data.
View Article and Find Full Text PDFJ Appl Clin Med Phys
December 2024
Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Purpose: To quantitatively evaluate the performance of two types of recurrent neural networks (RNNs), long short-term memory (LSTM) and gated recurrent units (GRU), using Monte Carlo dropout (MCD) to predict pharmacokinetic (PK) parameters from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data.
Methods: DCE-MRI data for simulation studies were synthesized using the extended Tofts model and a population-averaged arterial input function (AIF). The ranges of PK parameters for training the RNNs were determined from data of patients with brain tumors.
J Educ Health Promot
October 2024
Adani Institute of Infrastructure Engineering, Ahmedabad, Gujarat, India.
Parkinson's disease (PD) is a neurodegenerative brain disorder that causes symptoms such as tremors, sleeplessness, behavioral problems, sensory abnormalities, and impaired mobility, according to the World Health Organization (WHO). Artificial intelligence, machine learning (ML), and deep learning (DL) have been used in recent studies (2015-2023) to improve PD diagnosis by categorizing patients and healthy controls based on similar clinical presentations. This study investigates several datasets, modalities, and data preprocessing techniques from the collected data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!