The excessive use of digital platforms with rapidly increasing users in the wireless domain enforces communication systems to provide information with high data rates, high reliability and strong transmission connection quality. Wireless systems with single antenna elements are not able to accomplish the desired needs. Therefore, multiple-input multiple-output (MIMO) antennas are getting more attention in modern high-speed communication systems and play an essential part in the current generation of wireless technology. However, along with their ability to significantly increase channel capacity, it is a challenge to achieve an optimal isolation in a compact size for fifth-generation (5G) terminals. Portable devices, automobiles, handheld gadgets, smart phones, wireless sensors, radio frequency identification and other applications use MIMO antenna systems. In this review paper, the fundamentals of MIMO antennas, the performance parameters of MIMO antennas, and different design approaches and methodologies are discussed to realize the three most commonly used MIMO antennas, i.e., ultra-wideband (UWB), dual-band and circularly polarized antennas. The recent MIMO antenna design approaches with UWB, dual band and circularly polarized characteristics are compared in terms of their isolation techniques, gain, efficiency, envelope correlation coefficient (ECC) and channel capacity loss (CCL). This paper is very helpful to design suitable MIMO antennas applicable in UWB systems, satellite communication systems, GSM, Bluetooth, WiMAX, WLAN and many more. The issues with MIMO antenna systems in the indoor environment along with possible solutions to improve their performance are discussed. The paper also focuses on the applications of MIMO characteristics for future sixth-generation (6G) technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608594 | PMC |
http://dx.doi.org/10.3390/s22207813 | DOI Listing |
Sensors (Basel)
January 2025
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
An eight-element MIMO antenna with a neutralization line was utilized for future 5G mm-wave applications. The MIMO configuration was designed for two ports, four ports and eight ports to validate the desired impedance and radiation characteristics. The measured results in terms of MIMO and scattering parameters correlate well with the simulated one.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
The School of Electric Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China.
In this paper, we propose a random frequency division multiplexing (RFDM) method for multicarrier modulation in mobile time-varying channels. Inspired by compressed sensing (CS) technology which use a sensing matrix (with far fewer rows than columns) to sample and compress the original sparse signal simultaneously, while there are many reconstruction algorithms that can recover the original high-dimensional signal from a small number of measurements at the receiver. The approach choose the classic sensing matrix of CS-Gaussian random matrix to compress the signal.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
This paper presents novel MIMO microstrip patch antennas with dimensions of 40 × 80 × 1.6 mm³ incorporating a decoupling and pattern correction structure (DPCS) designed to mitigate mutual coupling and radiation pattern distortion, operating within 3.6-3.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, King Saud University, 11421, Riyadh, Saudi Arabia.
A multipurpose antenna system that can handle a broad area of frequencies is crucial in the effort to build up widespread 5G Internet-of-Things (IoT) networks. For fifth-generation Internet-of-things applications, this research introduces a new multi-band antenna that can operate in the sub-6 GHz band (2-7 GHz), Ku-band (13-17.5 GHz), and millimeter wave band (25-39 GHz).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!