A Practical Approach to the Analysis and Optimization of Neural Networks on Embedded Systems.

Sensors (Basel)

Research Unit of Computer Systems and Bioinformatics, Department of Engineering, Universitá Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00141 Rome, Italy.

Published: October 2022

The exponential increase in internet data poses several challenges to cloud systems and data centers, such as scalability, power overheads, network load, and data security. To overcome these limitations, research is focusing on the development of edge computing systems, i.e., based on a distributed computing model in which data processing occurs as close as possible to where the data are collected. Edge computing, indeed, mitigates the limitations of cloud computing, implementing artificial intelligence algorithms directly on the embedded devices enabling low latency responses without network overhead or high costs, and improving solution scalability. Today, the hardware improvements of the edge devices make them capable of performing, even if with some constraints, complex computations, such as those required by Deep Neural Networks. Nevertheless, to efficiently implement deep learning algorithms on devices with limited computing power, it is necessary to minimize the production time and to quickly identify, deploy, and, if necessary, optimize the best Neural Network solution. This study focuses on developing a universal method to identify and port the best Neural Network on an edge system, valid regardless of the device, Neural Network, and task typology. The method is based on three steps: a trade-off step to obtain the best Neural Network within different solutions under investigation; an optimization step to find the best configurations of parameters under different acceleration techniques; eventually, an explainability step using local interpretable model-agnostic explanations (LIME), which provides a global approach to quantify the goodness of the classifier decision criteria. We evaluated several MobileNets on the Fudan Shangai-Tech dataset to test the proposed approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611103PMC
http://dx.doi.org/10.3390/s22207807DOI Listing

Publication Analysis

Top Keywords

neural network
16
best neural
12
neural networks
8
edge computing
8
neural
6
network
6
data
5
computing
5
practical approach
4
approach analysis
4

Similar Publications

RNA Translocation through Protein Nanopores: Interlude of the Molten RNA Globule.

J Am Chem Soc

January 2025

Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.

Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.

View Article and Find Full Text PDF

Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction.

J Chem Theory Comput

January 2025

Advanced Artificial Intelligence Theoretical and Computational Chemistry Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.

We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths.

View Article and Find Full Text PDF

This study introduces a hybrid network model for phase classification, integrating quantum networks and complex-valued neural networks. This architecture uses elemental composition as its only input, eliminating complex feature engineering. Parameterized quantum networks handle sparse elemental data and convert data from real to complex domains, increasing information dimensionality.

View Article and Find Full Text PDF

Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75 receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75 levels are transiently modulated, yet the molecular mechanisms underlying this process are not known.

View Article and Find Full Text PDF

A key property of our environment is the mirror symmetry of many objects, although symmetry is an abstract global property with no definable shape template, making symmetry identification a challenge for standard template-matching algorithms. We therefore ask whether Deep Neural Networks (DNNs) trained on typical natural environmental images develop a selectivity for symmetry similar to that of the human brain. We tested a DNN trained on such typical natural images with object-free random-dot images of 1, 2, and 4 symmetry axes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!