A stroke is a common disease that can easily lead to lower limb motor dysfunction in the elderly. Stroke survivors can effectively train muscle strength through leg flexion and extension training. However, available lower limb rehabilitation robots ignore the knee soft tissue protection of the elderly in training. This paper proposes a human-robot cooperative lower limb active strength training based on a robust admittance control strategy. The stiffness change law of the admittance model is designed based on the biomechanics of knee joints, and it can guide the user to make force correctly and reduce the stress on the joint soft tissue. The controller will adjust the model stiffness in real-time according to the knee joint angle and then indirectly control the exertion force of users. This control strategy not only can avoid excessive compressive force on the joint soft tissue but also can enhance the stimulation of quadriceps femoris muscles. Moreover, a dual input robust control is proposed to improve the tracking performance under the disturbance caused by model uncertainty, interaction force and external noise. Experiments about the controller performance and the training feasibility were conducted with eight stroke survivors. Results show that the designed controller can effectively influence the interaction force; it can reduce the possibility of joint soft tissue injury. The robot also has a good tracking performance under disturbances. This control strategy also can enhance the stimulation of quadriceps femoris muscles, which is proved by measuring the muscle electrical signal and interaction force. Human-robot cooperative strength training is a feasible method for training lower limb muscles with the knee soft tissue protection mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611061PMC
http://dx.doi.org/10.3390/s22207746DOI Listing

Publication Analysis

Top Keywords

soft tissue
20
control strategy
16
lower limb
16
human-robot cooperative
12
strength training
12
joint soft
12
interaction force
12
cooperative strength
8
training based
8
based robust
8

Similar Publications

Purpose Of The Study: Open (incisional) biopsies have long been accepted as the gold standard in diagnosing bone and soft tissue tumors. However, the main disadvantage of this method is that it can lead to increased contamination, hematoma, infection, and pathological fracture. Compared to open biopsies, percutaneous core needle biopsies are less invasive, do not require hospitalization, have low costs and low complication rates, and there is no need for wound healing in cases that require radiotherapy.

View Article and Find Full Text PDF

Aim And Background: Angioedema is a nonpruritic swelling that typically affects the skin, mucous membranes of the face, and perioral soft tissues. It can be life-threatening, but it is usually not and can be treated conservatively unless the airway is compromised. This paper seeks to illuminate a rare case of hereditary angioedema (HAE) onset following dental procedures in a 9-year-old Indian boy.

View Article and Find Full Text PDF

Necrotizing fasciitis is a severe and rapidly progressing soft tissue infection that requires immediate intervention. However, its manifestation as tarsal tunnel syndrome in a diabetic patient is an extremely rare occurrence, with no previous reports found in the existing literature. We present a case report of a patient in their late 50s with uncontrolled diabetes who had necrotizing fasciitis and presented initially to the emergency department with hypotension.

View Article and Find Full Text PDF

Perivascular epithelioid cell tumors (PEComas) are a rare group of mesenchymal neoplasms composed of perivascular epithelioid cells. While commonly found in the kidney, uterus, and soft tissues, PEComas of the liver are exceedingly rare.  We present a case of a PEComa incidentally discovered in a 73-year-old female patient undergoing evaluation for abdominal pain.

View Article and Find Full Text PDF

Spinal tissue identification using a Forward-oriented endoscopic ultrasound technique.

Biomed Eng Lett

January 2025

School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China.

The limited imaging depth of optical endoscope restrains the identification of tissues under surface during the minimally invasive spine surgery (MISS), thus increasing the risk of critical tissue damage. This study is proposed to improve the accuracy and effectiveness of automatic spinal soft tissue identification using a forward-oriented ultrasound endoscopic system. Total 758 ex-vivo soft tissue samples were collected from ovine spines to create a dataset with four categories including spinal cord, nucleus pulposus, adipose tissue, and nerve root.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!